Menu Close

Category: Integration

calculate-U-n-1-n-n-cos-x-2-y-2-x-2-y-2-dxdy-and-determine-lim-n-U-n-nature-of-U-n-

Question Number 148566 by mathmax by abdo last updated on 29/Jul/21 $$\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[\right.\right.} \:\:\:\frac{\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} \\ $$$$\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} ? \\…

why-d-dx-0-y-e-t-dt-e-y-dy-dx-

Question Number 17480 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{why}\:\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\int_{\mathrm{0}} ^{\:\:\mathrm{y}} \mathrm{e}^{\mathrm{t}} \mathrm{dt}\right)=\mathrm{e}^{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}} \\ $$ Answered by mrW1 last updated on 06/Jul/17 $$\mathrm{let}\:\mathrm{F}\left(\mathrm{y}\right)=\int_{\mathrm{0}}…

If-f-x-is-a-periodic-function-with-period-time-t-prove-that-a-a-t-f-x-dx-is-a-indipendent-

Question Number 17479 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{periodic}\:\mathrm{function}\:\mathrm{with}\:\mathrm{period} \\ $$$$\mathrm{time}\:\mathrm{t}\:;\:\mathrm{prove}\:\mathrm{that}\int_{\mathrm{a}} ^{\:\mathrm{a}+\mathrm{t}} {f}\left({x}\right)\mathrm{d}{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{indipendent}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Prove-that-e-e-2-lnx-1-lnx-2-dx-e-6-2e-3-

Question Number 17475 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{e}} ^{\mathrm{e}^{\mathrm{2}} } \frac{\mathrm{ln}{x}}{\left(\mathrm{1}+\mathrm{ln}{x}\right)^{\mathrm{2}} }\mathrm{d}{x}=\frac{\mathrm{e}}{\mathrm{6}}\left(\mathrm{2e}−\mathrm{3}\right) \\ $$ Answered by ajfour last updated on 06/Jul/17 $$\mathrm{lnx}=\mathrm{t}\:\:\:\Rightarrow\:\:\:\frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{dt}\:\:\mathrm{or}\:\:\mathrm{dx}=\mathrm{e}^{\mathrm{t}}…