Question Number 148565 by mathmax by abdo last updated on 29/Jul/21 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)} \\ $$ Answered by Ar Brandon last updated…
Question Number 148570 by mathmax by abdo last updated on 29/Jul/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$ Answered by Ar Brandon last updated on 29/Jul/21…
Question Number 148567 by mathmax by abdo last updated on 29/Jul/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{logx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$ Answered by Ar Brandon last updated…
Question Number 148566 by mathmax by abdo last updated on 29/Jul/21 $$\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[\right.\right.} \:\:\:\frac{\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} \\ $$$$\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} ? \\…
Question Number 17480 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{why}\:\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\int_{\mathrm{0}} ^{\:\:\mathrm{y}} \mathrm{e}^{\mathrm{t}} \mathrm{dt}\right)=\mathrm{e}^{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}} \\ $$ Answered by mrW1 last updated on 06/Jul/17 $$\mathrm{let}\:\mathrm{F}\left(\mathrm{y}\right)=\int_{\mathrm{0}}…
Question Number 17479 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{periodic}\:\mathrm{function}\:\mathrm{with}\:\mathrm{period} \\ $$$$\mathrm{time}\:\mathrm{t}\:;\:\mathrm{prove}\:\mathrm{that}\int_{\mathrm{a}} ^{\:\mathrm{a}+\mathrm{t}} {f}\left({x}\right)\mathrm{d}{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{indipendent}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 83010 by mathmax by abdo last updated on 26/Feb/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ch}\left({cos}\left(\mathrm{2}{x}\right)\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 17473 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\:\mathrm{2a}} \sqrt{\mathrm{2ax}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\frac{\Pi\mathrm{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$ Answered by sma3l2996 last updated on 06/Jul/17 $${A}=\int_{\mathrm{0}}…
Question Number 83008 by mathmax by abdo last updated on 26/Feb/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ch}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 17475 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{e}} ^{\mathrm{e}^{\mathrm{2}} } \frac{\mathrm{ln}{x}}{\left(\mathrm{1}+\mathrm{ln}{x}\right)^{\mathrm{2}} }\mathrm{d}{x}=\frac{\mathrm{e}}{\mathrm{6}}\left(\mathrm{2e}−\mathrm{3}\right) \\ $$ Answered by ajfour last updated on 06/Jul/17 $$\mathrm{lnx}=\mathrm{t}\:\:\:\Rightarrow\:\:\:\frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{dt}\:\:\mathrm{or}\:\:\mathrm{dx}=\mathrm{e}^{\mathrm{t}}…