Menu Close

Category: Integration

5sin-x-cos-x-cos-x-1-1-3-dx-

Question Number 64270 by aliesam last updated on 16/Jul/19 $$\int\frac{\mathrm{5}{sin}\left({x}\right)\:{cos}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{{cos}\left({x}\right)+\mathrm{1}}}\:{dx} \\ $$ Answered by Tanmay chaudhury last updated on 16/Jul/19 $${t}^{\mathrm{3}} =\mathrm{1}+{cosx}\:\:\mathrm{3}{t}^{\mathrm{2}} {dt}=−{sinxdx} \\ $$$$\int\frac{\mathrm{5}×\left({t}^{\mathrm{3}}…

x-2-1-x-1-2-3-dx-

Question Number 129794 by bramlexs22 last updated on 19/Jan/21 $$\:\:\int\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)^{−\mathrm{2}/\mathrm{3}} \:\mathrm{dx}\:? \\ $$ Answered by EDWIN88 last updated on 19/Jan/21 $$\:\int\:\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \:\mathrm{dx}\:=\:\left(\mathrm{x}−\mathrm{1}\right)\left(\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}/\mathrm{3}} \right)−\frac{\mathrm{3}}{\mathrm{4}}\int\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}/\mathrm{3}} \:\mathrm{dx}…

1-3x-3-e-x-3-dx-

Question Number 129788 by bramlexs22 last updated on 19/Jan/21 $$\:\int\:\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{3}} \right){e}^{{x}^{\mathrm{3}} } \:{dx}\: \\ $$ Answered by EDWIN88 last updated on 19/Jan/21 $$\:\mathrm{let}\:\mathrm{z}\:=\:{xe}^{{x}^{\mathrm{3}} } \:\Rightarrow\:{dz}\:=\:\left({e}^{{x}^{\mathrm{3}}…

prove-that-x-2-e-x-2-cos-x-2-sin-x-2-dx-pi-sin-3-tan-1-2-2-4-125-1-4-

Question Number 129764 by Eric002 last updated on 18/Jan/21 $${prove}\:{that} \\ $$$$\int_{−\infty} ^{+\infty} {x}^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{2}} } \:{cos}\left({x}^{\mathrm{2}} \right){sin}\left({x}^{\mathrm{2}} \right)\:{dx} \\ $$$$=\frac{\sqrt{\pi}{sin}\left[\frac{\sqrt{\mathrm{3}}{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)}{\mathrm{2}}\right]}{\mathrm{4}\:\sqrt[{\mathrm{4}}]{\mathrm{125}}} \\ $$ Answered…

1-x-dx-

Question Number 64213 by Tony Lin last updated on 15/Jul/19 $$\int\frac{\mathrm{1}}{{x}!}{dx}=? \\ $$ Commented by MJS last updated on 15/Jul/19 $$\frac{\mathrm{1}}{{x}!}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:{x}\in\mathbb{N}\:\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{continuous} \\ $$$$\mathrm{for}\:{x}\in\mathbb{R}\:\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{integrable} \\ $$…