Question Number 63927 by aliesam last updated on 11/Jul/19 $$\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{\left(\mathrm{3}+\mathrm{2}{cos}\:{x}\right)^{\mathrm{2}} } \\ $$ Commented by aliesam last updated on 12/Jul/19 $${god}\:{bless}\:{you}\:{sir}\:..{well}\:{done}.. \\ $$…
Question Number 63903 by aliesam last updated on 10/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 63892 by mathmax by abdo last updated on 10/Jul/19 $${calculate}\:{A}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2017}} }{\mathrm{1}+{x}^{\mathrm{2019}} }\:{dx}\:\:{and}\:{B}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2019}} }{\mathrm{1}+{x}^{\mathrm{2021}} }\:{dx} \\ $$$${calculate}\:{the}\:{fraction}\:\frac{{A}}{{B}} \\ $$ Commented…
Question Number 129418 by mnjuly1970 last updated on 15/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…{advsnced}\:\:\:\:\:\:{calculus}….\:\: \\ $$$$ \\ $$$$\:\:\:{calculate}:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {e}^{−\sqrt{{x}}\:} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{{x}}\:}\right){dx} \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…
Question Number 63883 by mmkkmm000m last updated on 10/Jul/19 $$\int{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−\mathrm{2}{x}\right){dx} \\ $$ Commented by mathmax by abdo last updated on 12/Jul/19 $${let}\:{A}\:=\int\:{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}−\mathrm{2}{x}\right)\:{dx}\:\:{we}\:{have} \\ $$$${ln}^{'} \left(\mathrm{1}−{u}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{u}}\:=−\sum_{{n}=\mathrm{0}}…
Question Number 63881 by mmkkmm000m last updated on 10/Jul/19 $$\int{e}^{{x}} /{Lnxdx} \\ $$ Commented by mathmax by abdo last updated on 11/Jul/19 $${let}\:{A}\:=\int\:\frac{{e}^{{x}} }{{lnx}}{dx}\:\:{changement}\:{lnx}\:={t}\:{give} \\…
Question Number 63852 by aliesam last updated on 10/Jul/19 $${prove}\:{that} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right)\:{cot}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:{dx}\:=\:\frac{\mathrm{3}\:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}\pi}+\frac{{ln}\pi\:{ln}\mathrm{2}}{\pi}+\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{e}^{\mathrm{2}\pi{x}} +\mathrm{1}}\:{dx} \\ $$ Terms of…
Question Number 63844 by mmkkmm000m last updated on 10/Jul/19 $$\int\left(\mathrm{1}+\mathrm{4}{x}+{x}^{\mathrm{2}} \right)^{{m}} {dx} \\ $$ Commented by mathmax by abdo last updated on 10/Jul/19 $${let}\:{A}_{{m}} =\int\:\left({x}^{\mathrm{2}}…
Question Number 129377 by pipin last updated on 15/Jan/21 $$\int\frac{\:\sqrt{\boldsymbol{\mathrm{x}}}}{\:\sqrt{\boldsymbol{\mathrm{x}}-\mathrm{1}}}\mathrm{dx}\:=\:… \\ $$ Answered by Ar Brandon last updated on 15/Jan/21 $$\mathcal{I}=\int\frac{\sqrt{\mathrm{x}}}{\:\sqrt{\mathrm{x}−\mathrm{1}}}\mathrm{dx}\:,\:\mathrm{x}=\mathrm{t}^{\mathrm{2}} \:\Rightarrow\mathrm{dx}=\mathrm{2tdt} \\ $$$$\:\:\:=\mathrm{2}\int\frac{\mathrm{t}^{\mathrm{2}} }{\:\sqrt{\mathrm{t}^{\mathrm{2}}…
Question Number 129370 by bramlexs22 last updated on 15/Jan/21 Answered by Ar Brandon last updated on 15/Jan/21 $$\Theta=\int_{\mathrm{1}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{y}} \frac{\mathrm{dxdy}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }=\int_{\mathrm{1}} ^{\mathrm{2}}…