Question Number 20281 by ajfour last updated on 25/Aug/17 $${Compute}\:{the}\:{volume}\:{bounded}\:{by} \\ $$$${the}\:{surfaces}:\:{y}={x}^{\mathrm{2}} ,\:{x}={y}^{\mathrm{2}} ,\:{z}=\mathrm{0}, \\ $$$${z}=\mathrm{12}+{y}−{x}^{\mathrm{2}} .\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{Ans}.\:\:\:\:\frac{\mathrm{549}}{\mathrm{144}}\right] \\ $$ Terms of Service Privacy…
Question Number 151345 by peter frank last updated on 20/Aug/21 $$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} }{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} +\mathrm{e}^{−\mathrm{cos}\:\mathrm{x}} }\mathrm{dx} \\ $$ Answered by Olaf_Thorendsen last updated on 20/Aug/21…
Question Number 85813 by jagoll last updated on 25/Mar/20 $$\int\:\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$ Commented by jagoll last updated on 25/Mar/20 $$\int\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\:\left(\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right)\:\mathrm{dx}\:=\: \\ $$$$\int\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}}…
Question Number 151341 by peter frank last updated on 20/Aug/21 $$\int_{\alpha} ^{\beta} \frac{\mathrm{dx}}{\mathrm{x}\sqrt{\left(\mathrm{x}−\alpha\right)\left(\beta−\mathrm{x}\right)\:}}=\frac{\pi}{\:\sqrt{\alpha\beta}} \\ $$$$\mathrm{where}\:\alpha,\beta\:>\mathrm{0} \\ $$ Answered by Kamel last updated on 20/Aug/21 $$…
Question Number 85807 by jagoll last updated on 25/Mar/20 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }} \\ $$ Answered by Joel578 last updated on 25/Mar/20 $${I}\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}}…
Question Number 151340 by peter frank last updated on 20/Aug/21 $$\mathrm{Evaluate} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\left(\mathrm{2x}^{\mathrm{332}} +\mathrm{x}^{\mathrm{998}} +\mathrm{4x}^{\mathrm{1668}} .\mathrm{sin}\:\mathrm{x}^{\mathrm{691}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{666}} }\mathrm{dx} \\ $$ Answered by qaz…
Question Number 85801 by mathmax by abdo last updated on 24/Mar/20 $${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left({cosx}\:+\mathrm{2}{sinx}\right)^{\mathrm{2}} } \\ $$ Commented by john santu last updated on 25/Mar/20…
Question Number 85793 by M±th+et£s last updated on 24/Mar/20 $$\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{tan}^{−\mathrm{1}} \left({x}−\mathrm{1}\right)\:{ln}\left({x}−\mathrm{1}\right)}{{x}}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 20257 by tammi last updated on 24/Aug/17 $$\int\frac{{dx}}{\left(\mathrm{1}−{x}\right)\sqrt{\mathrm{1}+{x}}} \\ $$ Answered by Tinkutara last updated on 24/Aug/17 $${t}^{\mathrm{2}} \:=\:{x}\:+\:\mathrm{1} \\ $$$${dx}\:=\:\mathrm{2}{tdt} \\ $$$$\int\frac{\mathrm{2}{tdt}}{\left(\mathrm{2}\:−\:{t}^{\mathrm{2}}…
Question Number 20255 by tammi last updated on 24/Aug/17 $$\int\frac{{x}^{\mathrm{3}} {dx}}{\:\sqrt{{x}−\mathrm{1}}} \\ $$ Answered by Tinkutara last updated on 24/Aug/17 $${x}\:−\:\mathrm{1}\:=\:{t}^{\mathrm{2}} \\ $$$${dx}\:=\:\mathrm{2}{tdt} \\ $$$${x}^{\mathrm{3}}…