Question Number 20238 by tammi last updated on 24/Aug/17 $$\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$ Commented by tammi last updated on 24/Aug/17 $${this}\:{answer}\:{is}\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$${i}\:{know}\:{the}\:{answer}\:{but}\:{can}\:{not}\:{solve}\:{this}\:{prblm}..{help} \\…
Question Number 85775 by M±th+et£s last updated on 24/Mar/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 20237 by tammi last updated on 24/Aug/17 $$\int\frac{{e}^{\mathrm{tan}^{−\mathrm{1}} {x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$ Commented by Tinkutara last updated on 24/Aug/17 $$\mathrm{Same}\:\mathrm{as}\:\mathrm{Q}.\:\mathrm{20164}. \\ $$…
Question Number 20230 by ajfour last updated on 24/Aug/17 Commented by ajfour last updated on 27/Aug/17 $${Find}\:{the}\:{area}\:{of}\:{that}\:{part}\:{of}\:{the} \\ $$$${surface}\:{of}\:{the}\:{sphere}\:: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={a}^{\mathrm{2}} \:{which}\:{is}\:{cut}\:{out}\:{by}…
Question Number 85760 by M±th+et£s last updated on 24/Mar/20 $$\int\frac{\left[{cos}^{−\mathrm{1}} \left({x}\right)\left\{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right\}\right]^{−\mathrm{1}} }{{log}\left\{\frac{{sin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\pi}\right\}}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151287 by yeti123 last updated on 19/Aug/21 $${I}\:=\:\int_{{x}={a}} ^{\:{x}={b}} \sqrt{{u}^{\mathrm{2}} \:+\:{v}^{\mathrm{2}} {x}^{\mathrm{2}} \:−\:\mathrm{2}{uvwx}}\:{dx}\:=\:? \\ $$ Commented by MJS_new last updated on 19/Aug/21 $$\sqrt{{v}^{\mathrm{2}}…
Question Number 151272 by Tawa11 last updated on 19/Aug/21 Commented by rs4089 last updated on 19/Aug/21 $${coxeter}\:{integral}\: \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 20202 by Joel577 last updated on 24/Aug/17 $$\mathrm{Is}\:\mathrm{definite}\:\mathrm{integral}\:\mathrm{can}\:\mathrm{have}\:\mathrm{negative}\:\mathrm{value}? \\ $$$$\mathrm{Because}\:\mathrm{I}\:\mathrm{think}\:\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:\mathrm{is}\:\mathrm{total}\:\mathrm{area}\:\mathrm{below} \\ $$$$\mathrm{graph}\:{f}\left({x}\right)\:\mathrm{from}\:{x}\:=\:{a}\:\mathrm{until}\:{x}\:=\:{b},\:\mathrm{so}\:\mathrm{it}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{negative} \\ $$ Commented by ajfour last updated…
Question Number 151268 by rs4089 last updated on 19/Aug/21 $$\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}−\mathrm{1}} }{{r}}\left[\psi\left(\frac{{r}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\right)−\psi\left(\frac{{r}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\right)\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 85721 by M±th+et£s last updated on 24/Mar/20 $${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}} {ln}\left({x}\right)}{\:\sqrt{{x}}}{dx}=−\sqrt{\pi}\left(\gamma+{ln}\left(\mathrm{4}\right)\right) \\ $$ Answered by mind is power last updated on…