Menu Close

Category: Integration

x-e-x-dx-

Question Number 16839 by arnabpapu550@gmail.com last updated on 27/Jun/17 $$\int\mathrm{x}^{\mathrm{e}^{\mathrm{x}} } \mathrm{dx} \\ $$ Commented by prakash jain last updated on 01/Jul/17 $$\mathrm{This}\:\mathrm{does}\:\mathrm{not}\:\mathrm{integrate}\:\mathrm{to}\:\mathrm{a}\:\mathrm{standard} \\ $$$$\mathrm{function}.…

Question-82330

Question Number 82330 by Power last updated on 20/Feb/20 Commented by mathmax by abdo last updated on 20/Feb/20 $${let}\:{I}\:=\int{x}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}\:\:{changement}\:{x}={ash}\left({t}\right)\:{give} \\ $$$${I}\:=\int\:{a}^{\mathrm{2}} {sh}^{\mathrm{2}}…

1-find-a-and-b-wich-verify-0-pi-at-2-bt-cos-nx-1-n-2-2-find-the-value-of-n-1-1-n-2-

Question Number 82286 by mathmax by abdo last updated on 19/Feb/20 $$\left.\mathrm{1}\right)\:{find}\:{a}\:{and}\:{b}\:{wich}\:{verify}\:\:\int_{\mathrm{0}} ^{\pi} \left({at}^{\mathrm{2}} \:+{bt}\right){cos}\left({nx}\right)\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$ Commented by…

x-3-x-3-1-dx-

Question Number 82283 by M±th+et£s last updated on 19/Feb/20 $$\int{x}^{\mathrm{3}} \sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx} \\ $$ Commented by MJS last updated on 20/Feb/20 $$\mathrm{it}'\mathrm{s}\:\mathrm{impossible}\:\mathrm{for}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this} \\ $$ Commented…

find-the-function-of-f-when-this-function-continue-at-interval-0-x-2-0-f-t-dt-d-dx-x-1-sin-pix-

Question Number 82244 by M±th+et£s last updated on 19/Feb/20 $${find}\:{the}\:{function}\:{of}\:{f}\:{when}\:{this}\:\: \\ $$$${function}\:{continue}\:{at}\:{interval}\:\left[−\infty,\mathrm{0}\right] \\ $$$$\int_{−{x}^{\mathrm{2}} } ^{\mathrm{0}} {f}\left({t}\right)\:{dt}=\frac{{d}}{{dx}}\left[{x}\left(\mathrm{1}−{sin}\left(\pi{x}\right)\right]\right. \\ $$ Commented by mr W last updated…

Evaluate-0-1-2-dx-1-x-2-1-x-2-

Question Number 16703 by Tinkutara last updated on 25/Jun/17 $$\mathrm{Evaluate}:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dx}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }} \\ $$ Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17 $${x}={tg}\varphi\Rightarrow{dx}=\left(\mathrm{1}+{tg}^{\mathrm{2}} \varphi\right){d}\varphi…