Menu Close

Category: Integration

N-3-2cos-x-2-3cos-x-dx-

Question Number 129746 by bramlexs22 last updated on 18/Jan/21 $$\:\mathrm{N}\:=\:\int\:\frac{\mathrm{3}+\mathrm{2cos}\:\mathrm{x}}{\mathrm{2}+\mathrm{3cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$ Answered by liberty last updated on 18/Jan/21 $$\:\mathrm{N}=\:\int\:\frac{\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{2}+\mathrm{3cos}\:\mathrm{x}\right)+\frac{\mathrm{8}}{\mathrm{3}}}{\mathrm{2}+\mathrm{3cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$$$\:\mathrm{N}=\:\frac{\mathrm{2}}{\mathrm{3}}\mathrm{x}\:+\:\frac{\mathrm{8}}{\mathrm{3}}\int\:\frac{\mathrm{dx}}{\mathrm{2}+\mathrm{3}\left(\mathrm{2cos}\:^{\mathrm{2}} \frac{\mathrm{x}}{\mathrm{2}}−\mathrm{1}\right)} \\ $$$$\:\mathrm{N}=\:\frac{\mathrm{2}}{\mathrm{3}}\mathrm{x}+\frac{\mathrm{8}}{\mathrm{3}}\int\:\frac{\mathrm{dx}}{\mathrm{6cos}\:^{\mathrm{2}}…

Question-64200

Question Number 64200 by aliesam last updated on 15/Jul/19 Commented by mathmax by abdo last updated on 15/Jul/19 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}−\mathrm{1}}{{lnx}}{dx}\:{changement}\:{lnx}=−{t}\:{give}\:{x}={e}^{−{t}} \\ $$$${I}\:=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}}…

Question-64176

Question Number 64176 by aliesam last updated on 15/Jul/19 Answered by MJS last updated on 15/Jul/19 $$\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\mathrm{is}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\Rightarrow\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{between}\:\mathrm{the}\:{x}−\mathrm{axis}\:\mathrm{and}\:{f}\left({x}\right)\:\mathrm{in}\:\left[−\mathrm{1};\:\mathrm{1}\right] \\ $$$$\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{2}\:\Rightarrow\:\mathrm{2}<\underset{−\mathrm{1}} {\int}^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dx}…

let-f-x-0-1-dt-x-2-t-with-x-gt-0-1-determine-a-explicit-form-for-f-x-2-determine-also-g-x-0-1-dt-x-2-x-2-3-give-f-n-x-at-form-of-integral-4-calculate-0-1-dt

Question Number 64160 by mathmax by abdo last updated on 14/Jul/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{x}\:+\mathrm{2}^{{t}} }\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\left({x}+\mathrm{2}^{{x}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{give}\:{f}^{\left({n}\right)}…