Question Number 85589 by sahnaz last updated on 23/Mar/20 $$\int\frac{\mathrm{1}+\mathrm{4u}}{−\mathrm{4u}^{\mathrm{2}} +\mathrm{2u}+\mathrm{2}}\mathrm{du} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151117 by mnjuly1970 last updated on 18/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 85568 by jagoll last updated on 23/Mar/20 $$\int\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\:}}\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}−\mathrm{cos}\:\mathrm{x}} \\ $$ Commented by jagoll last updated on 23/Mar/20 $$\mathrm{I}\:=\:\int\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\:}}\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}−\mathrm{cos}\:\mathrm{x}} \\…
Question Number 85551 by jagoll last updated on 22/Mar/20 $$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} } \\ $$ Commented by jagoll last updated on 23/Mar/20 Terms of Service…
Question Number 151069 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:::\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:\left(\mathrm{1145141919810893x}\right)}{\mathrm{x}\left(\mathrm{cosh}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)}\mathrm{dx}=\frac{\pi}{\mathrm{4}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151068 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:::\:\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{\mathrm{x}}}{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{14x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{4}}} }\mathrm{dx}=\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151065 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:\:::\:\:\int_{−\infty} ^{+\infty} \frac{\Gamma\left(\mathrm{x}\right)}{\Gamma\left(\mathrm{x}+\mathrm{a}\right)}\mathrm{sin}\:\left(\pi\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{2}^{\mathrm{a}−\mathrm{1}} }{\Gamma\left(\mathrm{a}\right)}\pi\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}>\mathrm{0}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151067 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:::\:\:\int_{\mathrm{0}} ^{\pi} \mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\centerdot\mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{sin}\:\mathrm{x}}−\mathrm{1}\right)\mathrm{dx}=\sqrt{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)+\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\pi \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151064 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:::\:\:\int_{\mathrm{0}} ^{\pi} \mathrm{arctan}\left(\frac{\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\varphi\mathrm{cos}\:\mathrm{x}+\mathrm{2}\varphi^{\mathrm{2}} }\right)\mathrm{dx}=\pi\mathrm{arctan}\:\sqrt{\varphi}\:\:\:\:\:\:\:\:\:\:\left(\varphi=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151061 by qaz last updated on 18/Aug/21 $$\mathrm{Calculate}\:\:::\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{x}\centerdot\mathrm{cot}\:\mathrm{x}\centerdot\mathrm{ln}^{\mathrm{2}} \mathrm{cos}\:\mathrm{xdx}=\frac{\pi^{\mathrm{3}} }{\mathrm{24}}\mathrm{ln2}+\frac{\pi}{\mathrm{6}}\mathrm{ln}^{\mathrm{3}} \mathrm{2}−\frac{\mathrm{3}}{\mathrm{16}}\pi\zeta\left(\mathrm{3}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com