Question Number 81591 by john santu last updated on 14/Feb/20 $$\mathrm{if}\:\mathrm{g}\left(−\mathrm{2}\right)=−\mathrm{5}\:\mathrm{and}\: \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{1}} \\ $$$$\mathrm{find}\:\mathrm{g}\left(\mathrm{4}\right)\: \\ $$ Commented by mr W last updated…
Question Number 147101 by mathmax by abdo last updated on 18/Jul/21 $$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)….\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}^{\mathrm{n}} } \right)\mathrm{dx} \\ $$ Answered by gsk2684 last…
Question Number 81549 by jagoll last updated on 13/Feb/20 $$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}\rfloor^{\mathrm{2}} \:\mathrm{dx}\:=\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\lfloor\mathrm{x}^{\mathrm{2}} \rfloor\mathrm{dx}= \\ $$ Commented by jagoll last updated…
Question Number 147061 by liberty last updated on 17/Jul/21 $$\:\:\:\:\:\int_{\:\mathrm{0}\:} ^{\:\infty} \:\frac{{x}^{{a}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}\:\frac{{dx}}{{x}}\:=?\: \\ $$$$\:\:\mathrm{0}<{a}<\mathrm{3}\:\: \\ $$ Answered by Ar Brandon last updated on…
Question Number 147060 by ArielVyny last updated on 17/Jul/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{\mathrm{2}{x}} \sqrt{{tanx}}{dx} \\ $$ Answered by mathmax by abdo last updated on 17/Jul/21 $$\Psi=\int_{\mathrm{0}}…
Question Number 147035 by rs4089 last updated on 17/Jul/21 $${using}\:{residue}\:{theorem} \\ $$$${evaluate}\:\:\int_{\mid{z}\mid=\mathrm{3}} \frac{{zsecz}}{\left({z}−\mathrm{1}\right)^{\mathrm{2}} }{dz} \\ $$ Answered by mathmax by abdo last updated on 17/Jul/21…
Question Number 81482 by Bash last updated on 13/Feb/20 $${Evaluate}\:\:\int_{−\infty} ^{\infty} \frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{13}}. \\ $$ Commented by abdomathmax last updated on 13/Feb/20 $${I}=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}}…
Question Number 146996 by ArielVyny last updated on 17/Jul/21 $$\int{ln}\left({cht}\right){dt} \\ $$ Answered by mathmax by abdo last updated on 17/Jul/21 $$\int\:\mathrm{log}\left(\mathrm{cht}\right)\mathrm{dt}\:=\int\:\mathrm{log}\left(\frac{\mathrm{e}^{\mathrm{t}} \:+\mathrm{e}^{−\mathrm{t}} }{\mathrm{2}}\right)\mathrm{dt} \\…
Question Number 81433 by abdomathmax last updated on 13/Feb/20 $${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by MJS last updated on 13/Feb/20 $$\int\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}}…
Question Number 81432 by abdomathmax last updated on 13/Feb/20 $${find}\:\:\int\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Commented by abdomathmax last updated on 20/Feb/20 $${let}\:{try}\:{complex}\:{method}\:{I}\:=\int\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}}…