Menu Close

Category: Integration

2-x-2-3-dx-

Question Number 84957 by john santu last updated on 17/Mar/20 $$\int\:\left(\mathrm{2}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} \:\mathrm{dx}\:=\: \\ $$ Commented by john santu last updated on 17/Mar/20 $$\int\:\left(\mathrm{8}−\mathrm{3}\left(\mathrm{4x}^{\mathrm{2}} \right)+\mathrm{3}\left(\mathrm{2x}^{\mathrm{4}}…

0-x-sinh-x-t-cosh-t-dt-

Question Number 84942 by M±th+et£s last updated on 17/Mar/20 $$\int_{\mathrm{0}} ^{{x}} {sinh}\left({x}−{t}\right)\:{cosh}\left({t}\right)\:{dt} \\ $$ Answered by mind is power last updated on 17/Mar/20 $${sh}\left({x}\right){ch}\left({y}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{{sh}\left({x}+{y}\right)+{sh}\left({x}−{y}\right)\right\} \\…

Question-84894

Question Number 84894 by Power last updated on 17/Mar/20 Commented by abdomathmax last updated on 18/Mar/20 $${I}=\int\sqrt{\frac{{ax}+{b}}{{cx}+{d}}}{dx}\:{we}\:{do}\:{the}\:{changement}\sqrt{\frac{{ax}+{b}}{{cx}+{d}}}={t}\:\Rightarrow \\ $$$$\frac{{ax}+{b}}{{cx}+{d}}={t}^{\mathrm{2}} \:\Rightarrow{ax}+{b}={ct}^{\mathrm{2}} {x}\:+{dt}^{\mathrm{2}} \:\Rightarrow\left({a}−{ct}^{\mathrm{2}} \right){x}={dt}^{\mathrm{2}} −{b}\:\Rightarrow \\…

e-2dx-xlnx-

Question Number 84879 by sahnaz last updated on 17/Mar/20 $$\mathrm{e}^{\int\frac{\mathrm{2dx}}{\mathrm{xlnx}}} \\ $$ Commented by jagoll last updated on 17/Mar/20 $$\int\:\frac{\mathrm{2dx}}{\mathrm{x}\:\mathrm{lnx}}\:=\:\int\:\frac{\mathrm{2d}\left(\mathrm{lnx}\right)}{\mathrm{lnx}}\:=\:\int\:\mathrm{2}\frac{\mathrm{du}}{\mathrm{u}} \\ $$$$=\:\mathrm{2}\:\mathrm{ln}\:\mathrm{u}\:+\:\mathrm{c}\:,\:\left[\mathrm{u}\:=\:\mathrm{ln}\:\mathrm{x}\:\right] \\ $$$$=\:\mathrm{2ln}\left(\mathrm{lnx}\right)\:+\:\mathrm{2lnC}\:=\:\mathrm{2ln}\left(\mathrm{Clnx}\right) \\…

sin-7x-cos-3x-dx-

Question Number 84843 by M±th+et£s last updated on 16/Mar/20 $$\int\frac{{sin}\left(\mathrm{7}{x}\right)}{{cos}\left(\mathrm{3}{x}\right)}\:{dx} \\ $$ Commented by jagoll last updated on 17/Mar/20 $$\mathrm{sin}\:\mathrm{7x}\:=\:\mathrm{sin}\:\left(\mathrm{4x}+\mathrm{3x}\right)\: \\ $$$$=\:\mathrm{sin}\:\mathrm{4x}\:\mathrm{cos}\:\mathrm{3x}\:+\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{sin}\:\mathrm{3x} \\ $$$$\int\:\frac{\mathrm{sin}\:\mathrm{7x}}{\mathrm{cos}\:\mathrm{3x}}\:\mathrm{dx}\:=\:\int\:\left(\mathrm{sin}\:\mathrm{4x}\:+\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{tan}\:\mathrm{3x}\right)\mathrm{dx} \\…