Question Number 150366 by SLVR last updated on 11/Aug/21 Commented by SLVR last updated on 11/Aug/21 $${kindly}\:{provide}\:{solution}..{already} \\ $$$${given}\:{in}\:{group} \\ $$ Terms of Service Privacy…
Question Number 150356 by mnjuly1970 last updated on 11/Aug/21 $$\:{solve}… \\ $$$$\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Arcsin}\:\left(\sqrt{{x}}\:\right)}{\mathrm{1}−{x}\:+\:{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$ Answered by Lordose last updated on 12/Aug/21 $$…
Question Number 84809 by M±th+et£s last updated on 16/Mar/20 $$\int\frac{{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {arctan}\left({x}\right)}\:{dx} \\ $$ Commented by abdomathmax last updated on 18/Mar/20 $${A}\:=\int\:\:\:\:\frac{{x}}{\left({x}^{\mathrm{2}\:} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:{arctanx}}\:{changement}\:{arctanx}={t} \\…
Question Number 84810 by M±th+et£s last updated on 16/Mar/20 $$\int_{\mathrm{0}} ^{\pi} {ln}\left(\frac{\mathrm{1}+{b}\:{cos}\left({x}\right)}{\mathrm{1}+{a}\:{sin}\left({x}\right)}\right)\:{dx} \\ $$$$−\mathrm{1}<{a}<{b}<\mathrm{1} \\ $$ Commented by mathmax by abdo last updated on 16/Mar/20…
Question Number 84766 by jagoll last updated on 15/Mar/20 $$\int\:\frac{\mathrm{dx}}{\left(\mathrm{16}+\mathrm{9sin}\:\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$ \\ $$ Commented by jagoll last updated on 16/Mar/20 $$\int\:\mathrm{sec}\:\:\mathrm{x}\:\left[\:\frac{\mathrm{cos}\:\:\mathrm{x}}{\left(\mathrm{16}+\mathrm{9sin}\:\mathrm{x}\right)^{\mathrm{2}} }\right]\:\mathrm{dx}\:= \\…
Question Number 19230 by tawa tawa last updated on 07/Aug/17 Answered by ajfour last updated on 07/Aug/17 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{f}\left(\mathrm{x}\right)\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{f}\left(\mathrm{x}−\mathrm{2}\right)\sqrt[{\mathrm{3}}]{\mathrm{1}+…}}}}\: \\ $$$$\Rightarrow\:\left[\mathrm{g}\left(\mathrm{x}\right)\right]^{\mathrm{3}} =\mathrm{1}+\mathrm{f}\left(\mathrm{x}\right)\mathrm{g}\left(\mathrm{x}−\mathrm{1}\right) \\ $$$$\Rightarrow\:\mathrm{degree}\:\mathrm{of}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{1}. \\ $$$$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{Ax}+\mathrm{B}…
Question Number 84759 by mathmax by abdo last updated on 15/Mar/20 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$ Answered by mind is power last updated…
Question Number 84733 by manr last updated on 15/Mar/20 $$\int\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx} \\ $$ Answered by TANMAY PANACEA last updated on 15/Mar/20 $$ \\ $$$$\int\frac{\left({x}^{\mathrm{2}}…
Question Number 19195 by vivek last updated on 06/Aug/17 $$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:{solve}\:{the}\:{intgration} \\ $$ Commented by vivek last updated on 07/Aug/17 $${please}\:{solve}\:{quetion} \\…
Question Number 84726 by M±th+et£s last updated on 15/Mar/20 $${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left({y}^{{y}} \right)^{\left({y}^{{y}} \right)^{\left({y}^{{y}} \right)^{.^{.^{.} } } } } {dy}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$…