Menu Close

Category: Integration

Evaluate-1-4-x-2-x-2x-1-dx-Question-ID-53-How-does-the-limits-change-in-the-solution-of-Q-No-53-

Question Number 15022 by Tinkutara last updated on 07/Jun/17 $$\mathrm{Evaluate}:\:\int_{\mathrm{1}} ^{\mathrm{4}} \frac{{x}^{\mathrm{2}} \:+\:{x}}{\:\sqrt{\mathrm{2}{x}\:+\:\mathrm{1}}}\:{dx}\:\left(\mathrm{Question}\:\mathrm{ID}:\right. \\ $$$$\left.\mathrm{53}\right)\:\mathrm{How}\:\mathrm{does}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{change}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{solution}\:\mathrm{of}\:\mathrm{Q}.\:\mathrm{No}.\:\mathrm{53}? \\ $$ Answered by Joel577 last updated on…

0-sinh-at-sinh-bt-sinh-ct-e-tz-dt-ab-c-z-2-c-2-a-2-b-2-K-k-1-4k-2-k-2-c-2-a-2-k-2-c-2-b-2-2k-1-z-2-2k-2-2k-1-c-2-a-2-b-2-

Question Number 146090 by Ar Brandon last updated on 10/Jul/21 $$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinh}\left(\mathrm{at}\right)\mathrm{sinh}\left(\mathrm{bt}\right)}{\mathrm{sinh}\left(\mathrm{ct}\right)\mathrm{e}^{\mathrm{tz}} }\mathrm{dt}= \\ $$$$\frac{\mathrm{ab}}{\mathrm{c}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\mathrm{K}}}\frac{−\mathrm{4k}^{\mathrm{2}} \left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}}…

Let-K-be-nonempty-corps-K-K-0-K-Prove-that-1-x-K-x-1-2-Deduce-that-p-is-prime-p-1-1-p-

Question Number 146073 by savitar last updated on 10/Jul/21 $${Let}\:{K}\:{be}\:{nonempty}\:\:{corps}\:,\:{K}^{\ast} ={K}−\left\{\mathrm{0}_{{K}} \right\} \\ $$$${Prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\in{K}^{\ast} } {\prod}{x}\:=\:−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){Deduce}\:{that}\: \\ $$$$\:\:{p}\:{is}\:{prime}\:\Leftrightarrow\:\left({p}−\mathrm{1}\right)!\equiv−\mathrm{1}\left[{p}\right] \\ $$ Terms…

transform-the-cartesian-inyegral-0-1-0-1-x-2-e-x-2-y-2-dy-dx-into-polar-integral-and-evaluate-it-

Question Number 146067 by gsk2684 last updated on 10/Jul/21 $${transform}\:{the}\:{cartesian}\:{inyegral}\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} {\int}}{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} \:{dy}\:{dx}\:{into}\:{polar}\:{integral}\: \\ $$$${and}\:{evaluate}\:{it}. \\ $$ Answered…

find-values-a-b-c-such-that-1-ax-2-bx-c-1-and-6b-2-8-a-2-3-is-Max-

Question Number 146062 by mnjuly1970 last updated on 10/Jul/21 $$ \\ $$$$\:\:\:\:{find}\:\:{values}\:\:{a}\:,\:{b}\:,\:{c}\:\:{such}\:{that}: \\ $$$$\:\:\:\:−\mathrm{1}\leqslant\:{ax}\:^{\mathrm{2}} +{bx}\:+{c}\:\leqslant\:\mathrm{1} \\ $$$$\:\:\:\:\:\:{and}\:\:\frac{\mathrm{6}{b}^{\:\mathrm{2}} +\:\mathrm{8}\:{a}^{\:\mathrm{2}} }{\mathrm{3}}\:{is}\:{Max}… \\ $$ Commented by mr W…