Menu Close

Category: Integration

1-a-4-x-k-x-1-4a-3-Find-the-value-of-1-a-1-x-1-dx-

Question Number 129269 by bramlexs22 last updated on 14/Jan/21 $$\:\int_{\mathrm{1}} ^{{a}} \:\frac{\mathrm{4}\sqrt{{x}}\:+{k}}{\:\sqrt{{x}}\:+\mathrm{1}}\:=\:\mathrm{4}{a}+\mathrm{3}\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\mathrm{1}} ^{\:{a}} \frac{\mathrm{1}}{\:\sqrt{{x}}\:+\mathrm{1}}\:{dx}\:. \\ $$ Answered by liberty last updated on 14/Jan/21…

calculate-dx-x-1-2-x-

Question Number 63721 by mathmax by abdo last updated on 08/Jul/19 $${calculate}\:\int\:\:\frac{{dx}}{\:\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}} \\ $$ Commented by Prithwish sen last updated on 08/Jul/19 $$\mathrm{put}\:\mathrm{x}−\mathrm{l}\:=\:\mathrm{z}^{\mathrm{2}} \:\:\:\Rightarrow\mathrm{dx}\:=\:\mathrm{2zdz} \\…

1-calculate-x-2-x-2-x-2-x-1-dx-2-find-the-value-of-0-1-x-2-x-2-x-2-x-1-dx-

Question Number 63722 by mathmax by abdo last updated on 08/Jul/19 $$\left.\mathrm{1}\right)\:{calculate}\:\int\:\left({x}^{\mathrm{2}} −{x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{2}} −{x}+\mathrm{2}\right)\sqrt{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}{dx}\:. \\ $$ Commented by Prithwish…

calculate-x-3-2-x-dx-

Question Number 63720 by mathmax by abdo last updated on 08/Jul/19 $${calculate}\:\int\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}{dx} \\ $$ Commented by Prithwish sen last updated on 08/Jul/19 $$\int\sqrt{−\mathrm{x}^{\mathrm{2}} +\mathrm{5x}\:−\mathrm{6}}\:\mathrm{dx}\:\:=\:\int\sqrt{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\mathrm{x}−\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}}…

W-cos-5x-cos-4x-2cos-3x-1-dx-

Question Number 129223 by bramlexs22 last updated on 14/Jan/21 $$\:\mathrm{W}\:=\:\int\:\frac{\mathrm{cos}\:\mathrm{5x}+\mathrm{cos}\:\mathrm{4x}}{\mathrm{2cos}\:\mathrm{3x}−\mathrm{1}}\:\mathrm{dx}\: \\ $$ Answered by bobhans last updated on 14/Jan/21 $$\:{W}=\int\frac{\mathrm{2cos}\:\left(\frac{\mathrm{9}{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2cos}\:\mathrm{3}{x}−\mathrm{1}}\:{dx} \\ $$$$\:{W}=\int\:\frac{\mathrm{2cos}\:\left(\frac{\mathrm{9}{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right).\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{2cos}\:\mathrm{3}{x}\mathrm{sin}\:\mathrm{3}{x}−\mathrm{sin}\:\mathrm{3}{x}}\:{dx} \\ $$$$\:{W}=\:\int\:\frac{\mathrm{2cos}\:\left(\frac{\mathrm{9}{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{sin}\:\mathrm{6}{x}−\mathrm{sin}\:\mathrm{3}{x}}{dx} \\…