Menu Close

Category: Integration

1-1-9x-2-dx-

Question Number 145777 by Engr_Jidda last updated on 08/Jul/21 $$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{dx} \\ $$ Answered by ArielVyny last updated on 08/Jul/21 $$\int\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }{dx}=\int\frac{\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }}{\left(\mathrm{1}−\mathrm{3}{x}\right)\left(\mathrm{1}+\mathrm{3}{x}\right)}{dx} \\…

2x-1-x-2-4x-5-dx-

Question Number 145775 by Engr_Jidda last updated on 08/Jul/21 $$\int\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{5}}}{dx} \\ $$ Answered by mathmax by abdo last updated on 08/Jul/21 $$\Upsilon=\int\:\:\frac{\mathrm{2x}+\mathrm{4}−\mathrm{3}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4x}+\mathrm{5}}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{2x}+\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4x}+\mathrm{5}}}\mathrm{dx}−\mathrm{3}\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}^{\mathrm{2}}…

1-sin-2-x-cos-2-x-dx-

Question Number 14688 by tawa tawa last updated on 03/Jun/17 $$\int\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\:\mathrm{dx} \\ $$ Answered by ajfour last updated on 03/Jun/17 $$\int\frac{\mathrm{4}}{\left(\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:\:=\mathrm{4}\int\frac{{dx}}{\left(\mathrm{sin}\:\mathrm{2}{x}\right)^{\mathrm{2}} }…

Question-14667

Question Number 14667 by Umar math last updated on 03/Jun/17 Commented by prakash jain last updated on 03/Jun/17 $$\frac{\mathrm{1}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} } \\…

Question-145723

Question Number 145723 by madwdah last updated on 07/Jul/21 Answered by bramlexs22 last updated on 07/Jul/21 $$\int\:\mathrm{x}.\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{xe}^{\mathrm{2x}} −\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{\mathrm{2x}} \left(\mathrm{2x}−\mathrm{1}\right)+\mathrm{c} \\ $$…