Question Number 84578 by msup trace by abdo last updated on 14/Mar/20 $${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dx}}{\left({cosx}\:+\mathrm{3}{sinx}\right)^{\mathrm{2}} } \\ $$ Commented by jagoll last updated on 14/Mar/20…
Question Number 84574 by msup trace by abdo last updated on 14/Mar/20 $${calculate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left({narcsinx}\right){dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 84577 by msup trace by abdo last updated on 14/Mar/20 $${calculate}\:\int\:\:\:\:\frac{{dx}}{{cosx}\:+{cos}\left(\mathrm{2}{x}\right)+{cos}\left(\mathrm{3}{x}\right)} \\ $$ Commented by jagoll last updated on 14/Mar/20 $$\mathrm{cos}\:{x}+\mathrm{cos}\:\mathrm{3}{x}+\mathrm{cos}\:\mathrm{2}{x}\:=\: \\ $$$$\mathrm{2cos}\:\mathrm{2}{x}\:\mathrm{cos}\:{x}\:+\:\mathrm{cos}\:\mathrm{2}{x}\:=\:…
Question Number 84570 by msup trace by abdo last updated on 14/Mar/20 $${calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\frac{\mathrm{3}}{{x}}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 84569 by msup trace by abdo last updated on 14/Mar/20 $${find}\:\:\int\:\:\:\:\frac{{dx}}{\mathrm{1}+{tan}^{\mathrm{4}} {x}} \\ $$ Answered by M±th+et£s last updated on 14/Mar/20 $$\int\frac{{sec}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}+{tan}^{\mathrm{2}}…
Question Number 150103 by mnjuly1970 last updated on 09/Aug/21 $$\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\pi} {sin}^{\:\frac{\mathrm{1}}{\mathrm{2}}} \left({x}\right).\:\mathrm{ln}\left(\:{sin}\:\left({x}\right)\:\right){dx}=? \\ $$$$ \\ $$ Answered by Ar Brandon last updated on 09/Aug/21…
Question Number 84566 by M±th+et£s last updated on 14/Mar/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 84561 by M±th+et£s last updated on 14/Mar/20 $$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({x}−{y}\right)−{cos}\left({x}\right)}{{xy}}{dx}\:{dy} \\ $$ Answered by mind is power last updated on 16/Mar/20…
Question Number 84557 by Power last updated on 14/Mar/20 Commented by jagoll last updated on 14/Mar/20 $$\mathrm{ln}\left(\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{u}\:\Rightarrow\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{e}^{\mathrm{u}} \\ $$$$−\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{e}^{\mathrm{u}} \:\mathrm{du}\: \\ $$$$\mathrm{dx}\:=\:\frac{−\mathrm{e}^{\mathrm{u}} }{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:=\:\frac{−\mathrm{e}^{\mathrm{u}} \:\mathrm{du}}{\:\sqrt{\mathrm{1}−\mathrm{e}^{\mathrm{2u}} }}…
Question Number 84556 by jagoll last updated on 14/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{8x}+\mathrm{13}}}\right)\:\mathrm{dx} \\ $$ Commented by john santu last updated on 14/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\left(\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{9}}}\right)\:\mathrm{dx}…