Question Number 14399 by tawa tawa last updated on 31/May/17 $$\mathrm{Evaluate}:\:\:\:\:\:\:\int\:\frac{\mathrm{1}\:+\:\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{e}^{\mathrm{3x}} }{\mathrm{e}^{−\mathrm{x}} \:−\:\mathrm{e}^{\mathrm{x}} }\:\:\mathrm{dx} \\ $$ Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 31/May/17 $${e}^{{x}}…
Question Number 14395 by tawa tawa last updated on 31/May/17 $$\mathrm{Evaluate}\:\:\:\:\:\:\int_{\:\:\:\mathrm{0}} ^{\:\:\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}\left(\mathrm{2x}\right)\:\mathrm{e}^{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)} \:\mathrm{dx}\: \\ $$ Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 31/May/17 $${u}={cos}^{\mathrm{2}}…
Question Number 79929 by Shomurodov Sirojiddin last updated on 29/Jan/20 $$\int{e}^{\sqrt{\mathrm{sin}\:{x}}} {dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 14394 by tawa tawa last updated on 31/May/17 $$\mathrm{Evaluate}\:\:\:\int\:\left(\frac{\mathrm{tanx}\:−\:\mathrm{cotx}}{\mathrm{tanx}\:+\:\mathrm{cotx}}\:\mathrm{sec}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$ Answered by RasheedSindhi last updated on 31/May/17 $$\mathrm{Evaluate}\:\:\:\int\:\left(\frac{\mathrm{tanx}\:−\:\mathrm{cotx}}{\mathrm{tanx}\:+\:\mathrm{cotx}}\:\mathrm{sec}^{\mathrm{2}} \mathrm{x}\right)\:\mathrm{dx} \\ $$$$\:\int\:\left(\frac{\frac{\mathrm{sinx}}{\mathrm{cosx}}\:−\:\frac{\mathrm{cosx}}{\mathrm{sinx}}}{\frac{\mathrm{sinx}}{\mathrm{cosx}}\:+\:\frac{\mathrm{cosx}}{\mathrm{sinx}}}\:\mathrm{sec}^{\mathrm{2}}…
Question Number 145456 by math55 last updated on 05/Jul/21 $$\int\boldsymbol{{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{2}\right)\boldsymbol{{dx}} \\ $$ Answered by Olaf_Thorendsen last updated on 05/Jul/21 $$\mathrm{F}\left({x}\right)\:=\:\int\mathrm{sin}\left({x}^{\mathrm{2}} +\mathrm{2}\right){dx} \\ $$$$\mathrm{F}\left({x}\right)\:=\:\int\left(\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left(\mathrm{2}\right)+\mathrm{cos}\left({x}^{\mathrm{2}}…
Question Number 79913 by Henri Boucatchou last updated on 29/Jan/20 $$\:{Convergence}\:\:{of}\:\:{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{{t}} }{{e}^{−{t}} +{e}^{\mathrm{2}{t}} \mid{sint}\mid}{dt} \\ $$ Commented by mathmax by abdo last updated…
Question Number 79903 by Pratah last updated on 29/Jan/20 Commented by jagoll last updated on 29/Jan/20 $$\mathrm{what}\:\mathrm{definition}\:\mathrm{of}\:\left[\mathrm{x}\right]? \\ $$$$\mathrm{it}\:\mathrm{same}\:\mathrm{with}\lfloor\mathrm{x}\rfloor\:? \\ $$ Commented by mr W…
Question Number 79869 by Henri Boucatchou last updated on 28/Jan/20 $${For}\:\:{witch}\:\:{value}\:\:{of}\:\:\alpha\:\:{the}\:\:{integral} \\ $$$$\:\:{I}=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\alpha}{\mathrm{1}+{x}}\right){dx}\:\:{converge}; \\ $$$$\:\:{and}\:\:{in}\:\:{this}\:\:{case}\:\:{calculate}\:\:\alpha \\ $$ Commented by mathmax by abdo…
Question Number 145385 by mnjuly1970 last updated on 04/Jul/21 $$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+\mathrm{cos}\:\left(\mathrm{2x}\right)}{\mathrm{sin}\:\left(\mathrm{2x}\:\right)}.\:\mathrm{ln}\sqrt[{\mathrm{3}}]{\mathrm{sec}\:\left(\mathrm{x}\right)}\:\mathrm{dx}=? \\ $$ Answered by mindispower last updated on 04/Jul/21 $${cos}\left(\mathrm{2}{x}\right)=\mathrm{2}{cos}^{\mathrm{2}} \left({x}\right)−\mathrm{1} \\ $$$$\Leftrightarrow−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}}…
Question Number 145378 by mnjuly1970 last updated on 04/Jul/21 $$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\left(\sqrt{\:\mathrm{1}+\:\mathrm{x}^{\mathrm{4}} }\:−\mathrm{x}^{\:\mathrm{2}} \:\right)\mathrm{dx}=? \\ $$ Answered by qaz last updated on 05/Jul/21…