Question Number 14274 by christine last updated on 30/May/17 Answered by Tinkutara last updated on 30/May/17 $$\int_{\mathrm{1}} ^{\infty} \frac{{xdx}}{{x}\:+\:\mathrm{1}}\:=\:\int_{\mathrm{1}} ^{\infty} \left(\mathrm{1}\:−\:\frac{\mathrm{1}}{{x}\:+\:\mathrm{1}}\right){dx} \\ $$$$=\:\int_{\mathrm{1}} ^{\infty} {dx}\:−\:\int_{\mathrm{1}}…
Question Number 145339 by qaz last updated on 04/Jul/21 $$\mathrm{Let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} \mathrm{cos}\:\mathrm{x},\mathrm{Find}\:\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)}{\mathrm{2}^{\mathrm{n}} }=? \\ $$ Answered by mathmax by abdo last updated on…
Question Number 145319 by mnjuly1970 last updated on 04/Jul/21 $$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:#\:\:\mathrm{Calculus}# \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!\:+\:\left({n}\:+\:\mathrm{1}\:\right)!}\:=? \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last…
Question Number 14243 by tawa tawa last updated on 30/May/17 $$\int\:\left[\mathrm{x}\:\left(\mathrm{lnx}\right)^{\mathrm{2}} \right]\:\mathrm{dx} \\ $$ Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 30/May/17 $${I}=\int{x}^{\mathrm{2}} {ln}^{\mathrm{2}} {xdx} \\…
Question Number 79763 by mathmax by abdo last updated on 28/Jan/20 $${calculate}\:\int_{\mathrm{0}} ^{\pi} \left\{{cos}^{\mathrm{8}} {x}\:+{sin}^{\mathrm{8}} {x}\right\}{dx} \\ $$ Commented by john santu last updated on…
Question Number 79758 by mathmax by abdo last updated on 27/Jan/20 $${find}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right){dx}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{ix}^{\mathrm{2}} \right){dx}\:{with}\:{i}=\sqrt{−\mathrm{1}} \\ $$ Commented by mathmax by abdo…
Question Number 145274 by ArielVyny last updated on 03/Jul/21 $$\int_{\mid{z}\mid=\mathrm{1}} \frac{\overset{−} {{f}}\left({z}\right)}{{z}−{a}}{dz} \\ $$ Answered by Olaf_Thorendsen last updated on 03/Jul/21 $${f}\left({a}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\oint_{\gamma} \frac{{f}\left({z}\right)}{{z}−{a}}\:{dz} \\ $$$$\Omega\:=\:\int_{\mid{z}\mid=\mathrm{1}}…
Question Number 79730 by Henri Boucatchou last updated on 27/Jan/20 $$\left.{I}\right)\:\:{For}\:{witch}\:{value}\:{of}\:\alpha\:{the}\:{integral} \\ $$$$\:{C}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx}\:\:{conveege}\:\:? \\ $$$${And}\:{in}\:{this}\:{case}\:{calculate}\:\alpha. \\ $$$$\left.{II}\right)\:\:{Let}\:\Delta=\left\{\left({x};\:{y}\right)/\:\mid{x}\mid+\mid{y}\mid\leqslant\mathrm{2}\right\} \\ $$$$\left.\:\:\:\:\:{a}\right)\:{Calculate}\:{I}_{\mathrm{1}} =\:\int\int_{\Delta} {dxdy}\:\:\:{and}\:\:\int\int_{\Delta} \frac{{dxdy}}{\left(\mid{x}\mid+\mid{y}\mid\right)^{\mathrm{2}}…
Question Number 145270 by mnjuly1970 last updated on 03/Jul/21 $$ \\ $$$$\:\:\:\:\:\:\:#\:\mathrm{Calculus}\:\left(\:\mathrm{I}\:\right)\:# \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{Arccot}\left(\mathrm{3}\:+\frac{{n}\:\left(\:{n}\:+\:\mathrm{1}\right)}{\mathrm{3}}\:\right)=\:? \\ $$$$\:\:\:\:\:\:….. \\ $$ Answered by Olaf_Thorendsen last updated…
Question Number 14181 by tawa tawa last updated on 29/May/17 $$\int\:\mathrm{sec}^{\mathrm{6}} \left(\mathrm{x}\right)\:\:\mathrm{dx}\:\: \\ $$ Answered by ajfour last updated on 29/May/17 $${let}\:\mathrm{tan}\:{x}={t} \\ $$$$\Rightarrow\mathrm{sec}\:^{\mathrm{2}} {xdx}={dt},\:{and}\:{we}\:{know}…