Question Number 79607 by sou99 last updated on 26/Jan/20 $${Solve}\:{this} \\ $$$$\int_{} \frac{\left({x}−{yz}\right)}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xyz}\right)^{\mathrm{3}/\mathrm{2}} }{dz} \\ $$$$ \\ $$$$ \\ $$ Commented by MJS…
Question Number 79580 by john santu last updated on 26/Jan/20 $$\mathrm{does}\:\mathrm{this}\:\mathrm{matter}\:\mathrm{reasonable} \\ $$$$\int\:\mathrm{sin}\:^{\mathrm{x}} \left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$ Commented by MJS last updated on 26/Jan/20 $$\mathrm{first}\:\mathrm{of}\:\mathrm{all},\:\mathrm{find}\:\mathrm{out}\:\mathrm{where}\:\mathrm{sin}^{{x}} \:{x}\:\mathrm{is}\:\mathrm{defined}……
Question Number 14014 by tawa tawa last updated on 26/May/17 $$\int\mathrm{cos}^{\mathrm{n}} \left(\mathrm{x}\right)\:\:\mathrm{dx} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{workings}. \\ $$ Answered by mrW1 last updated on 26/May/17 $${I}_{{n}} =\int\mathrm{cos}^{\mathrm{n}}…
Question Number 145081 by qaz last updated on 02/Jul/21 $$\int_{\mathrm{0}} ^{\infty} \left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{2}\centerdot\mathrm{4}}−\frac{\mathrm{x}^{\mathrm{7}} }{\mathrm{2}\centerdot\mathrm{4}\centerdot\mathrm{6}}+…\right)\centerdot\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{x}^{\mathrm{6}} }{\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{4}^{\mathrm{2}} \centerdot\mathrm{6}^{\mathrm{2}} }+…\right)\mathrm{dx}=\sqrt{\mathrm{e}} \\…
Question Number 79531 by jagoll last updated on 26/Jan/20 $$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{x}}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\:? \\ $$ Commented by john santu last updated on 26/Jan/20 $${remember}\:\underset{\mathrm{0}} {\overset{\infty}…
Question Number 145064 by akolade last updated on 02/Jul/21 $$\:\:\:\:\:\:\int\mathrm{cos}\:\mathrm{2xln}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$$$\:\:\:\:\:\: \\ $$ Answered by mathmax by abdo last updated on 02/Jul/21 $$\Psi=\int\:\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{log}\left(\mathrm{1}+\mathrm{tanx}\right)\mathrm{dx}\:\:\:\mathrm{by}\:\mathrm{parts} \\…
Question Number 79528 by mathmax by abdo last updated on 25/Jan/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {cos}\left({x}^{\mathrm{2}} \right){dx} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 79527 by mathmax by abdo last updated on 25/Jan/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{3}} } {dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 79520 by TawaTawa last updated on 25/Jan/20 Commented by mathmax by abdo last updated on 26/Jan/20 $$\Omega\:=\int_{\mathrm{0}} ^{\frac{\mathrm{2}}{\mathrm{5}}} \:\frac{{cos}^{\mathrm{2}} {x}}{{cos}^{\mathrm{2}} \left({x}−\frac{\mathrm{1}}{\mathrm{5}}\right)}{dx}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{2}}{\mathrm{5}}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{cos}\left(\mathrm{2}{x}−\frac{\mathrm{2}}{\mathrm{5}}\right)}{dx}…
Question Number 79516 by Pratah last updated on 25/Jan/20 Commented by abdomathmax last updated on 25/Jan/20 $${I}\:=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} \:\int_{{k}} ^{{k}+\mathrm{1}} {kx}\:{dx}\:=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} {k}\:\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{{k}} ^{{k}+\mathrm{1}}…