Question Number 129212 by bramlexs22 last updated on 13/Jan/21 $$\:\mathrm{M}\:=\:\int\:\sqrt{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{5}}}\:\mathrm{dx}\:? \\ $$ Answered by TheSupreme last updated on 13/Jan/21 $${x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}={t} \\ $$ Answered…
Question Number 63667 by mathmax by abdo last updated on 07/Jul/19 $$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{{cost}\:+{x}\:{sint}}\:\:\:{wih}\:{x}\:{from}\:{R}. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sint}}{\left({cost}\:+{xsint}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\left[{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{dt}}{{cos}\left(\mathrm{2}{t}\right)+\mathrm{2}{sin}\left(\mathrm{2}{t}\right)}\right. \\ $$…
Question Number 63666 by mathmax by abdo last updated on 07/Jul/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{{dx}}{\mathrm{2}{sinx}\:+{cosx}} \\ $$ Commented by MJS last updated on 07/Jul/19 $$=\mathrm{0} \\…
Question Number 63664 by mathmax by abdo last updated on 07/Jul/19 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{{x}+{t}^{{n}} }\:{dt}\:\:\:{with}\:\mathrm{0}<{a}<\mathrm{1}\:\:{and}\:\:{x}>\mathrm{0}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\left({x}+{t}^{{n}} \right)^{\mathrm{2}} }\:{dt}…
Question Number 63661 by mathmax by abdo last updated on 06/Jul/19 $${let}\:\mathrm{0}<{a}<\mathrm{1}\:{find}\:{the}\:{valueof}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ Commented by mathmax by abdo last updated…
Question Number 63662 by mathmax by abdo last updated on 06/Jul/19 $$\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{{n}} }{dx}\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\:\:{and}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{and}\:\int_{\mathrm{0}}…
Question Number 129180 by mnjuly1970 last updated on 13/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:{calculus}… \\ $$$$\:\:\:{calculate}:: \\ $$$$\:\:\:\:\:\:\phi\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\left({sin}\left({x}\right)+{cos}\left({x}\right)+\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} } \\ $$$$ \\ $$ Commented by Dwaipayan…
Question Number 63641 by aliesam last updated on 06/Jul/19 Commented by mathmax by abdo last updated on 06/Jul/19 $${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mid{sin}\left({n}\pi{x}\right)\mid}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx}\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ={lim}_{{n}\rightarrow+\infty}…
Question Number 129177 by bramlexs22 last updated on 13/Jan/21 $$\:\mathrm{G}\:=\:\int\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$ Answered by liberty last updated on 13/Jan/21 $$\:\mathrm{G}\:=\:\int\:\frac{\mathrm{sin}\:\mathrm{x}\left(\mathrm{sin}\:\mathrm{x}+\mathrm{1}\right)}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\:\mathrm{dx} \\ $$$$\:\mathrm{G}\:=\:\int\:\frac{\mathrm{2sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left\{\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right\}^{\mathrm{2}} }{\mathrm{2cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left\{\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right\}}\mathrm{dx}…
Question Number 129173 by bramlexs22 last updated on 13/Jan/21 $$\:\mathrm{J}\:=\:\int\:\frac{\mathrm{d}\theta}{\mathrm{tan}\:\theta+\mathrm{cot}\:\theta+\mathrm{sec}\:\theta+\mathrm{csc}\:\theta}\:? \\ $$ Answered by liberty last updated on 13/Jan/21 $$\:\mathrm{J}\:=\:\int\frac{\mathrm{d}\theta}{\frac{\mathrm{sin}\:\theta+\mathrm{1}}{\mathrm{cos}\:\theta}+\frac{\mathrm{cos}\:\theta+\mathrm{1}}{\mathrm{sin}\:\theta}}\:=\:\int\:\frac{\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta\:\mathrm{d}\theta}{\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{sin}\:\theta+\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{cos}\:\theta} \\ $$$$\:\mathrm{J}\:=\:\int\:\frac{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\mathrm{d}\theta}{\mathrm{1}+\mathrm{sin}\:\theta+\mathrm{cos}\:\theta}\:=\:\int\:\frac{\mathrm{2sin}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\theta}{\mathrm{2sin}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}\mathrm{d}\theta…