Menu Close

Category: Integration

1-Integrate-F-x-y-x-2-over-the-region-bounded-by-y-x-2-x-2-and-x-1-2-Integrate-G-x-y-x-2-y-2-over-the-region-bounded-by-the-triangle-x-y-y-

Question Number 80914 by TawaTawa last updated on 07/Feb/20 (1)IntegrateF(x,y)=x2overtheregionboundedbyy=x2,x=2andx=1(2)$$\mathrm{Integrate}\:\:\:\:\mathrm{G}\left(\mathrm{x},\:\mathrm{y}\right)\:\:=\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\:\:\:\mathrm{over}\:\mathrm{the}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\: \

log-x-2-dx-

Question Number 15235 by arnabpapu550@gmail.com last updated on 08/Jun/17 (logx)2dx=? Answered by liday last updated on 18/Jun/17 $$\int\left({log}\sqrt{{x}}\right)^{\mathrm{2}} {dx}=\frac{\mathrm{1}}{\mathrm{4}}\int\left({logx}\right)^{\mathrm{2}} {dx}=\frac{\mathrm{1}}{\mathrm{4}}\left[{x}\left({logx}\right)^{\mathrm{2}} −\int{x}\centerdot\mathrm{2}{logx}\centerdot\frac{\mathrm{1}}{{x}}{dx}\right] \