Question Number 144771 by imjagoll last updated on 29/Jun/21 $$\mathrm{A}\:\mathrm{region}\:\mathrm{is}\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{curves} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{4y},\:\mathrm{x}^{\mathrm{2}} =−\mathrm{4y},\:\mathrm{x}=\mathrm{4}\:\&\:\mathrm{x}=−\mathrm{4} \\ $$$$\mathrm{V}_{\mathrm{1}} \mathrm{is}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{obtained} \\ $$$$\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{above}\:\mathrm{region}\:\mathrm{round} \\ $$$$\mathrm{the}\:\mathrm{y}−\mathrm{axis}.\:\:\mathrm{Another}\:\mathrm{regions} \\ $$$$\mathrm{consists}\:\mathrm{of}\:\mathrm{points}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{satisfying} \\ $$$$\mathrm{x}^{\mathrm{2}}…
Question Number 144764 by nonh1 last updated on 29/Jun/21 Answered by liberty last updated on 29/Jun/21 $$\int_{\mathrm{0}} ^{\:\sqrt{\mathrm{ln}\:\mathrm{2}}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\mathrm{xe}^{\mathrm{x}^{\mathrm{2}} } \:\left(\frac{\mathrm{d}\left(\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }\right)\mathrm{dx}…
Question Number 144763 by nonh1 last updated on 29/Jun/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 79222 by mind is power last updated on 23/Jan/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{x}^{{k}} }{dx}=? \\ $$ Commented by mathmax by abdo…
Question Number 144756 by mondlihk last updated on 28/Jun/21 Commented by Mathspace last updated on 28/Jun/21 Answered by Olaf_Thorendsen last updated on 28/Jun/21 $$\Omega\:=\:\int\int_{\mathcal{D}\:=\:\left\{{x}\geqslant\mathrm{0},\:{y}\geqslant\mathrm{0},\:{x}+{y}\leqslant\mathrm{1}\right\}} {xy}\:{dxdy}…
Question Number 144738 by Ar Brandon last updated on 28/Jun/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{On}\:\mathrm{souhaite}\:\mathrm{calculer}\:\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{t}}{{t}}{dt}. \\ $$$$\left(\mathrm{1}\right)\:\mathrm{On}\:\mathrm{d}\acute {\mathrm{e}finit}\:\mathrm{la}\:\mathrm{fonction}\:{F}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{tx}} \frac{\mathrm{sin}{t}}{{t}}{dt}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{D}\acute {\mathrm{e}terminer}\:\mathrm{le}\:\mathrm{domaine}\:\mathrm{de}\:\mathrm{d}\acute {\mathrm{e}finition}\:\mathrm{de}\:{f}\:\mathrm{sur}\:\mathbb{R}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{Montrer}\:\mathrm{que}\:{F}\:\mathrm{est}\:\mathrm{de}\:\mathrm{classe}\:{C}^{\mathrm{1}}…
Question Number 144720 by mnjuly1970 last updated on 28/Jun/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\mathrm{calculus}….. \\ $$$$\: \\ $$$$\Omega\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sech}\left(\pi{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\:\mathrm{2}} }\:{dx}\:\overset{?} {=}\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{Ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$ Answered…
Question Number 79186 by john santu last updated on 23/Jan/20 $$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{cos}\:\left({x}\right)}{\mathrm{1}+{e}^{\frac{\mathrm{1}}{{x}}} }\:{dx}\:? \\ $$ Answered by mind is power last updated on 23/Jan/20…
Question Number 144721 by mnjuly1970 last updated on 28/Jun/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:………\:\mathrm{Nice}\:……\ast\ast\ast……\mathrm{Calculus}……… \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{f}\:\left(\:\mathrm{x}\:\right)\::\:=\:\left[\:\mathrm{tan}\:\left(\mathrm{x}\right)\:+\:\mathrm{cot}\:\left(\mathrm{x}\right)\:\right] \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{R}_{\:\mathrm{f}\:\:} \:=\:? \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Hint}::\:\:\:\left[\:\mathrm{x}\:\right]\::=\:\mathrm{Max}\:\left\{\:\mathrm{m}\:\in\mathbb{Z}\:\mid\:\mathrm{m}\:\leqslant\:\mathrm{x}\:\right\}\:…
Question Number 79187 by john santu last updated on 23/Jan/20 $$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{cos}\:\left({nx}\right)−\mathrm{cos}\:\left({n}\alpha\right)}{\mathrm{cos}\:\left({x}\right)−\mathrm{cos}\:\left(\alpha\right)}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com