Menu Close

Category: Integration

x-n-1-x-3n-1-x-n-a-dx-

Question Number 144705 by imjagoll last updated on 28/Jun/21 $$\:\:\int\:\frac{\mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{x}^{\mathrm{3n}+\mathrm{1}} \:\left(\mathrm{x}^{\mathrm{n}} −\mathrm{a}\right)}\:\mathrm{dx}\:? \\ $$ Answered by liberty last updated on 28/Jun/21 $$\:\mathrm{let}\:\mathrm{x}^{\mathrm{n}} =\:\mathrm{y} \\…

Question-144691

Question Number 144691 by mnjuly1970 last updated on 27/Jun/21 Answered by mnjuly1970 last updated on 27/Jun/21 $$\:\:\:{ans}: \\ $$$$\:\:\:\:\:{a}\:,{b}\:,\:{c}\:\:\:\:\:\:\:,\:\:{x}\:,\:{y}\:,\:{z}\:\:\:{positive}\:{real} \\ $$$$\:{number}\:: \\ $$$$\:\:{titus}\:{lemma}: \\ $$$$\:\:\frac{{a}^{\mathrm{2}}…

Find-out-0-1-ln-1-t-t-2-dt-Then-deduce-the-value-of-A-n-1-1-n-n-1-2n-1-n-

Question Number 79128 by ~blr237~ last updated on 22/Jan/20 $${Find}\:{out}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{t}+{t}^{\mathrm{2}} \right){dt} \\ $$$${Then}\:{deduce}\:{the}\:{value}\:{of}\:\:\:{A}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\begin{pmatrix}{\mathrm{2}{n}+\mathrm{1}}\\{{n}}\end{pmatrix}} \\ $$ Commented by mathmax by abdo last…

Calculus-In-AB-C-B-2-C-a-b-then-specify-the-limits-of-the-changes-

Question Number 144662 by mnjuly1970 last updated on 27/Jun/21 $$\:\:\:\:\:\:\:………..\:\:\mathrm{Calculus}……….. \\ $$$$\:\mathrm{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:: \\ $$$$\hat {\mathrm{B}}\:=\:\mathrm{2}\:\hat {\mathrm{C}}\:\:\:\:,\:\:{a}\:\:=\:\lambda\:{b}\:\:\:{then}\:{specify} \\ $$$$\:{the}\:\:{limits}\:{of}\:{the}\:{changes}\:\:\:'\:\:\lambda\:\:'\:\:: \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$ \\ $$…

Find-the-areas-of-the-regions-enclosed-by-the-lines-and-curves-x-y-2-1-and-x-y-1-y-2-

Question Number 144636 by liberty last updated on 27/Jun/21 $$\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{regions} \\ $$$$\:\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{and}\:\mathrm{curves} \\ $$$$\:\:\:\mathrm{x}=\mathrm{y}^{\mathrm{2}} −\mathrm{1}\:\mathrm{and}\:\mathrm{x}=\mid\mathrm{y}\mid\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\: \\ $$$$ \\ $$ Answered by imjagoll last updated…

Triangle-AOC-inscribed-in-the-region-cut-from-the-parabola-y-x-2-by-the-line-y-a-2-Find-the-limit-of-ratio-of-the-area-of-the-triangle-to-the-area-of-the-parabolic-region-as-a-approaches-zero-

Question Number 144638 by liberty last updated on 27/Jun/21 $$\mathrm{Triangle}\:\mathrm{AOC}\:\mathrm{inscribed} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{region}\:\mathrm{cut}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{line}\:\mathrm{y}=\mathrm{a}^{\mathrm{2}} \:.\mathrm{Find}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\mathrm{of}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangle}\:\mathrm{to}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{parabolic}\:\mathrm{region}\:\mathrm{as}\:\mathrm{a}\:\mathrm{approaches} \\…