Question Number 78625 by mathmax by abdo last updated on 19/Jan/20 $${calculate}\:\:\int_{โ\infty} ^{+\infty} \:\frac{{arctan}\left({x}^{\mathrm{2}} โ\mathrm{3}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last…
Question Number 78621 by mathmax by abdo last updated on 19/Jan/20 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\:\int_{{x}} ^{{x}^{\mathrm{3}} } \:\:\frac{{sh}\left({xt}^{\mathrm{2}} \right)}{{sin}\left({xt}\right)}{dt} \\ $$ Commented by mathmax by abdo last…
Question Number 144143 by ArielVyny last updated on 22/Jun/21 $$\int_{\frac{\mathrm{1}}{{a}}} ^{{a}} \frac{{arctg}\left({x}\right)}{{x}}{dx}=??? \\ $$ Answered by mathmax by abdo last updated on 22/Jun/21 $$\mathrm{I}=\int_{\frac{\mathrm{1}}{\mathrm{a}}} ^{\mathrm{a}}…
Question Number 144142 by bobhans last updated on 22/Jun/21 $$\:\int\:\frac{\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{…}}}}}}{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx} \\ $$ Answered by liberty last updated on 22/Jun/21 $$\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{…}}}}\:=\:\ell\: \\ $$$$\sqrt{\mathrm{cos}\:\mathrm{x}+\ell}\:=\:\ell\:\Rightarrow\ell^{\mathrm{2}} โ\ellโ\mathrm{cos}\:\mathrm{x}\:=\mathrm{0} \\ $$$$\Rightarrow\ell\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4cos}\:\mathrm{x}}}{\mathrm{2}}…
Question Number 144116 by BHOOPENDRA last updated on 21/Jun/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 78575 by TawaTawa last updated on 18/Jan/20 $$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:\:\mathrm{dx} \\ $$ Answered by peter frank last updated on 18/Jan/20 $${u}=\sqrt{\mathrm{tan}\:{x}} \\ $$$${dx}=\frac{\mathrm{2}{udu}}{\mathrm{1}+{u}^{\mathrm{4}} } \\…
Question Number 131496 by benjo_mathlover last updated on 05/Feb/21 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}+\frac{\pi}{\mathrm{6}}\right)\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{if}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{6}}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\:\mathrm{T}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\int_{\pi} ^{\:\frac{\mathrm{4}\pi}{\mathrm{3}}} \mathrm{f}\left(\mathrm{x}+\pi\right)\mathrm{dx}. \\ $$$$\mathrm{nice}\:\mathrm{integral} \\ $$ Answered by talminator2856791…
Question Number 65950 by ajfour last updated on 06/Aug/19 $$\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{tan}\:^{\mathrm{3}} {xdx}\:=\:? \\ $$ Answered by Tupac Shakur last updated on 06/Aug/19 $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…
Question Number 65945 by Chi Mes Try last updated on 06/Aug/19 $${pls}\:{i}\:{need}\:{solution}\:{plssss}…{asap} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{n} \\ $$$$\:\:\:{lim}\:\:\:\:\:\:\:\:\:\:\:\in\:\:\:\:\left(\frac{{r}^{\mathrm{3}} }{{r}^{\mathrm{4}} +{n}^{\mathrm{4}} }\right) \\ $$$${n}\rightarrow\infty\:\:\:\:\:\:{r}=\mathrm{1} \\ $$$$ \\ $$$${please}\:{try}\:{and}\:{understand}\:{the}\:{way}\:{i}\:{typed}\:{it}…
Question Number 404 by 123456 last updated on 30/Dec/14 $$\mathrm{proof}\:\mathrm{that}\:\mathrm{for}\:\mathrm{a}\:\mathrm{function}\:{f}\:\mathrm{continuos}\:\mathrm{on}\:\left[\mathrm{0},\infty\right)\:\mathrm{and}\:\mathrm{integrable} \\ $$$$\mathrm{if}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\mid{f}\left({x}\right)\mid{dx}\:\mathrm{converge}\:\mathrm{then}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}{f}\left({x}\right){dx}\:\mathrm{converge} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com