Menu Close

Category: Integration

x-2-1-ln-x-2-1-2lnx-x-4-dx-

Question Number 335 by Vishal Bhardwaj last updated on 22/Dec/14 $$\int\:\frac{\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\left[{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{2}{lnx}\right]}{{x}^{\mathrm{4}} }\:{dx} \\ $$ Commented by 123456 last updated on 22/Dec/14 $$\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}^{\mathrm{4}}…

nice-calculus-prove-that-0-1-Arcsin-x-Arccos-x-dx-2-pi-2-

Question Number 131401 by mnjuly1970 last updated on 04/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathscr{A}{rcsin}\left({x}\right)\right).\left(\mathscr{A}{rccos}\left({x}\right)\right){dx}\overset{??} {=}\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$ Answered by mathmax by…

1-e-xe-t-ln-x-x-dx-

Question Number 310 by 123456 last updated on 25/Jan/15 $$\underset{\mathrm{1}} {\overset{{e}} {\int}}{xe}^{{t}} −\frac{\mathrm{ln}\:{x}}{{x}}{dx} \\ $$ Answered by prakash jain last updated on 20/Dec/14 $$\int{xe}^{{t}} {dx}−\int\frac{\mathrm{ln}\:{x}}{{x}}{dx}…

Evaluate-0-te-3t-cos-t-dt-

Question Number 307 by userid1 last updated on 25/Jan/15 $$\mathrm{Evaluate}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}{te}^{−\mathrm{3}{t}} \mathrm{cos}\:{t}\:{dt} \\ $$ Commented by 123456 last updated on 20/Dec/14 $$\underset{\mathrm{0}} {\overset{\infty} {\int}}{te}^{−\mathrm{3}{t}}…

x-y-gt-0-B-x-y-0-1-t-x-1-1-t-y-1-dt-x-0-t-x-1-e-t-dt-1-show-that-x-gt-0-x-1-x-x-and-lim-n-gt-x-x-1-x-n-n-x-n-1-x-

Question Number 65834 by ~ À ® @ 237 ~ last updated on 04/Aug/19 $$\:\:\:\forall\:\:{x},\:{y}\:\:>\mathrm{0}\:\:\:\:{B}\left({x},{y}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt}\:\:\:\:\:\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{show}\:{that}\:\:\forall\:{x}>\mathrm{0}\:\:\:\:\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right)\:\:\:\:{and}\:\:{lim}_{{n}−>\infty}…

1-calculate-dx-1-ix-and-dx-1-ix-2-deduce-the-value-of-dx-1-x-2-3-calculate-dx-1-ix-2-and-dx-1-ix-2-4-deduce-the-value

Question Number 65837 by mathmax by abdo last updated on 04/Aug/19 $$\left.\mathrm{1}\right)\:{calculate}\:\int_{−\infty} ^{\infty} \:\frac{{dx}}{\mathrm{1}+{ix}}\:\:{and}\:\int_{−\infty} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}−{ix}} \\ $$$$\left.\mathrm{2}\right){deduce}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{ix}^{\mathrm{2}}…

Let-go-toward-a-rational-order-of-derivation-Part-1-What-s-that-special-factor-Let-n-p-and-k-three-integer-different-of-zero-We-state-J-n-k-p-0-1-1-x-n-p-k-n-dx-and-C-n-

Question Number 65828 by ~ À ® @ 237 ~ last updated on 04/Aug/19 $$\:{Let}\:{go}\:{toward}\:{a}\:{rational}\:{order}\:{of}\:{derivation} \\ $$$$ \\ $$$${Part}\:\mathrm{1}\::\:\:{What}'{s}\:{that}\:{special}\:{factor}\:\: \\ $$$${Let}\:{n}\:,\:{p}\:{and}\:{k}\:{three}\:{integer}\:\:{different}\:{of}\:{zero} \\ $$$${We}\:\:{state}\:{J}_{{n},{k}} \left({p}\right)=\int_{\mathrm{0}} ^{\mathrm{1}}…