Menu Close

Category: Integration

How-can-I-calculate-the-volume-of-a-region-bounded-by-y-x-2-3-x-1-and-x-2-rotating-about-the-y-7-using-the-shell-method-

Question Number 131364 by EDWIN88 last updated on 04/Feb/21 $$ \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{I}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{volume}\: \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} +\mathrm{3}\:;\mathrm{x}=\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{x}=\mathrm{2}\:\mathrm{rotating}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}=\mathrm{7}\:\mathrm{using} \\ $$$$\mathrm{the}\:\mathrm{shell}\:\mathrm{method}. \\ $$ Answered by bramlexs22 last…

Prove-that-I-n-0-pi-2-dt-1-tant-n-does-not-depend-of-the-term-n-deduces-that-0-dx-x-2035-1-x-2-1-pi-4-

Question Number 65805 by ~ À ® @ 237 ~ last updated on 04/Aug/19 $$\:\:{Prove}\:{that}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{1}+\left({tant}\right)^{{n}} }\:\:{does}\:{not}\:{depend}\:{of}\:{the}\:{term}\:{n} \\ $$$${deduces}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2035}}…

1-1-1-x-dx-

Question Number 260 by 9999 last updated on 25/Jan/15 $$\int_{−\mathrm{1}} ^{+\mathrm{1}} \mid\mathrm{1}−{x}\mid{dx}= \\ $$ Answered by 123456 last updated on 17/Dec/14 $$\mid\mathrm{1}−{x}\mid=\begin{cases}{\mathrm{1}−{x}}&{{x}\leqslant\mathrm{1}}\\{{x}−\mathrm{1}}&{{x}\geqslant\mathrm{1}}\end{cases} \\ $$$$\int_{−\mathrm{1}} ^{+\mathrm{1}}…

a-b-f-x-f-x-f-a-b-x-dx-

Question Number 259 by a@b.c last updated on 25/Jan/15 $$\int_{{a}} ^{{b}} \:\frac{{f}\left({x}\right)}{{f}\left({x}\right)+{f}\left({a}+{b}−{x}\right)}{dx}= \\ $$ Answered by prakash jain last updated on 17/Dec/14 $$\mathrm{Substitue}\:{x}={a}+{b}−{y}\:\Rightarrow{dx}=−{dy} \\ $$$$\mathrm{The}\:\mathrm{given}\:\mathrm{integral}\:{I}…

Shows-that-1-ix-2-pi-xsinh-pix-with-z-0-t-z-1-e-t-dt-Then-Prove-that-0-1-ix-2-dx-pi-4-

Question Number 65786 by ~ À ® @ 237 ~ last updated on 04/Aug/19 $$\:{Shows}\:{that}\:\:\mid\Gamma\left(\mathrm{1}+{ix}\right)\mid^{\mathrm{2}} =\frac{\pi}{{xsinh}\left(\pi{x}\right)}\:\:\:\:\:\:{with}\:\Gamma\left({z}\right)=\int_{\mathrm{0}_{} } ^{\infty} \:{t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$${Then}\:{Prove}\:{that}\:\:\int_{\mathrm{0}} ^{\infty} \:\mid\Gamma\left(\mathrm{1}+{ix}\right)\mid^{\mathrm{2}}…

evaluate-sin-x-x-dx-

Question Number 243 by 123456 last updated on 25/Jan/15 $$\mathrm{evaluate} \\ $$$$\underset{−\infty} {\overset{+\infty} {\int}}\frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$ Answered by prakash jain last updated on 17/Dec/14 $$\mathrm{Let}\:\mathrm{us}\:\mathrm{consider}\:\underset{\mathrm{0}}…