Question Number 63509 by mathmax by abdo last updated on 05/Jul/19 $${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$ Commented by Prithwish sen last updated on…
Question Number 129038 by bramlexs22 last updated on 12/Jan/21 $$\int\:\frac{\mathrm{5e}^{\mathrm{4t}} +\mathrm{10e}^{\mathrm{2t}} +\mathrm{2}}{\mathrm{e}^{\mathrm{2t}} +\mathrm{2}}\:\mathrm{dt}\: \\ $$ Answered by liberty last updated on 12/Jan/21 $$\:\int\:\frac{\left(\mathrm{5e}^{\mathrm{2t}} +\mathrm{1}\right)\left(\mathrm{e}^{\mathrm{2t}} +\mathrm{2}\right)−\mathrm{e}^{\mathrm{2t}}…
Question Number 129031 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Given}\:{that}\:\boldsymbol{{tan}}^{−\mathrm{1}} \boldsymbol{{x}}\:{show}\:{that}\:\: \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}\:=\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} } \\ $$ Answered by MJS_new last updated on 12/Jan/21 $${y}=\mathrm{arctan}\:{x} \\…
Question Number 129033 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${prove}\:{using}\:{the}\:{first}\:{principle}\:{that} \\ $$$${the}\:{derivative}\:{of}\:\boldsymbol{{sin}}\:\boldsymbol{{x}}\:{is}\:\boldsymbol{{cox}}\:\boldsymbol{{x}}\:{and} \\ $$$${that}\:{the}\:{derivative}\:{of}\:\boldsymbol{{cos}}\:\boldsymbol{{x}}\:{is} \\ $$$$−\boldsymbol{{sinx}} \\ $$ Commented by bramlexs22 last updated on 12/Jan/21…
Question Number 129014 by bramlexs22 last updated on 12/Jan/21 $$\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\:−\frac{\mathrm{1}}{\mathrm{4}}} {x}\left({x}+\mathrm{1}\right)\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}\:{dx}\:=?\: \\ $$ Commented by Ajao yinka last updated on 12/Jan/21 37/192…
Question Number 129009 by bramlexs22 last updated on 12/Jan/21 $$\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)=\frac{\mathrm{1}+\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{1}−\mathrm{f}\left(\mathrm{x}\right)}\:;\:\mathrm{f}\left(\mathrm{2}\right)=\mathrm{2} \\ $$$$\mathrm{and}\:\int_{\mathrm{2}} ^{\:\mathrm{2018}} \mathrm{x}.\mathrm{f}\left(\mathrm{2018}\right)\mathrm{dx}=\mathrm{2}^{\mathrm{a}} .\mathrm{3}^{\mathrm{b}} .\mathrm{5}^{\mathrm{c}} .\mathrm{7}^{\mathrm{d}} .\mathrm{11}^{\mathrm{e}} .\mathrm{101}^{\mathrm{f}} \\ $$$$\mathrm{then}\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}\:+\mathrm{f}=\_\_ \\ $$ Answered by…
Question Number 129001 by pipin last updated on 12/Jan/21 $$\: \\ $$$$\:\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} \:}\:=\:… \\ $$ Answered by Ar Brandon last updated on 12/Jan/21…
Question Number 128985 by bramlexs22 last updated on 11/Jan/21 $$\:\int\:\mathrm{ln}\:\left(\mathrm{tan}\:\mathrm{x}\right)\:\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 128982 by bramlexs22 last updated on 11/Jan/21 $$\:\int_{\:\mathrm{0}} ^{\:\infty} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated on 12/Jan/21…
Question Number 128983 by bramlexs22 last updated on 11/Jan/21 $$\:\int\:\frac{\sqrt{\mathrm{x}}}{\mathrm{x}−\mathrm{1}}\:\mathrm{dx}\:=? \\ $$ Commented by bramlexs22 last updated on 12/Jan/21 Answered by liberty last updated on…