Question Number 77960 by jagoll last updated on 12/Jan/20 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{4}} +{x}}\:{dx}? \\ $$ Commented by john santu last updated on 12/Jan/20 $${we}\:{divide}\:{by}\:{x}^{\mathrm{2}} \\ $$$$\int\:\frac{\mathrm{2}{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}}…
Question Number 12422 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Apr/17 Commented by mrW1 last updated on 22/Apr/17 $${f}\left({x}\right)=\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\mathrm{cos}\:\varphi+\mathrm{1}}={F}\left({x},\varphi\right)+{C} \\ $$$${f}\left(\mathrm{0}\right)={F}\left(\mathrm{0},\varphi\right)+{C} \\ $$$$\underset{\varphi\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left(\mathrm{0}\right)=\underset{\varphi\rightarrow\mathrm{0}} {\mathrm{lim}}\:{F}\left(\mathrm{0},\varphi\right)+{C} \\…
Question Number 143487 by mathmax by abdo last updated on 15/Jun/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{log}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143477 by ArielVyny last updated on 14/Jun/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{arctg}\left({t}^{\mathrm{2}} \right)} {dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143474 by Ghaniy last updated on 14/Jun/21 $${for}\:{all}\:{positive}\:{integral}., \\ $$$$\:\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} \left(\mathrm{u}_{\mathrm{n}−\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}\right)−\mathrm{u}_{\mathrm{n}} \\ $$$$\:\mathrm{u}_{\mathrm{n}} =\mathrm{2}\:{and}\:\mathrm{u}_{\mathrm{1}} =\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${prove}\:{that}\::\:\mathrm{3log}_{\mathrm{2}} \left[\mathrm{u}_{\mathrm{n}} \right]=\mathrm{2}^{\mathrm{n}} −\mathrm{1}\left(−\mathrm{1}\right)^{\mathrm{n}}…
Question Number 77918 by john santu last updated on 12/Jan/20 $$\int\underset{\mathrm{0}} {\overset{\pi} {\:}}\:{e}^{−\mathrm{2}{x}} \:\mathrm{sin}\:{x}\:{dx}\:?\: \\ $$ Commented by mathmax by abdo last updated on 12/Jan/20…
Question Number 12377 by tawa last updated on 20/Apr/17 $$\int\:\:\frac{\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{x}}}}{\mathrm{x}}\:\:\mathrm{dx} \\ $$ Answered by mrW1 last updated on 21/Apr/17 $${t}^{\mathrm{2}} =\sqrt{{x}} \\ $$$${t}^{\mathrm{4}} ={x} \\…
Question Number 143443 by mnjuly1970 last updated on 14/Jun/21 Commented by amin96 last updated on 14/Jun/21 $$? \\ $$$$ \\ $$ Answered by mr W…
Question Number 77886 by mathmax by abdo last updated on 11/Jan/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}…
Question Number 77887 by aliesam last updated on 11/Jan/20 $$\int\frac{{e}^{{sinh}\left({x}\right)} }{{cosh}\left({x}\right)}\:{dx} \\ $$ Answered by MJS last updated on 12/Jan/20 $$\int\frac{\mathrm{e}^{\mathrm{sinh}\:{x}} }{\mathrm{cosh}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sinh}\:{x}\:\rightarrow\:{dx}=\frac{\mathrm{1}}{\mathrm{cosh}\:{x}}\right] \\…