Menu Close

Category: Integration

2x-3-1-x-4-x-dx-

Question Number 77960 by jagoll last updated on 12/Jan/20 $$\int\:\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{4}} +{x}}\:{dx}? \\ $$ Commented by john santu last updated on 12/Jan/20 $${we}\:{divide}\:{by}\:{x}^{\mathrm{2}} \\ $$$$\int\:\frac{\mathrm{2}{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}}…

Question-12422

Question Number 12422 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Apr/17 Commented by mrW1 last updated on 22/Apr/17 $${f}\left({x}\right)=\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{2}{x}\mathrm{cos}\:\varphi+\mathrm{1}}={F}\left({x},\varphi\right)+{C} \\ $$$${f}\left(\mathrm{0}\right)={F}\left(\mathrm{0},\varphi\right)+{C} \\ $$$$\underset{\varphi\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left(\mathrm{0}\right)=\underset{\varphi\rightarrow\mathrm{0}} {\mathrm{lim}}\:{F}\left(\mathrm{0},\varphi\right)+{C} \\…

for-all-positive-integral-u-n-1-u-n-u-n-1-2-2-u-n-u-n-2-and-u-1-2-1-2-prove-that-3log-2-u-n-2-n-1-1-n-where-x-is-the-integral-part-of-x-

Question Number 143474 by Ghaniy last updated on 14/Jun/21 $${for}\:{all}\:{positive}\:{integral}., \\ $$$$\:\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} \left(\mathrm{u}_{\mathrm{n}−\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}\right)−\mathrm{u}_{\mathrm{n}} \\ $$$$\:\mathrm{u}_{\mathrm{n}} =\mathrm{2}\:{and}\:\mathrm{u}_{\mathrm{1}} =\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${prove}\:{that}\::\:\mathrm{3log}_{\mathrm{2}} \left[\mathrm{u}_{\mathrm{n}} \right]=\mathrm{2}^{\mathrm{n}} −\mathrm{1}\left(−\mathrm{1}\right)^{\mathrm{n}}…

calculate-0-arctan-x-2-x-2-x-2-a-2-dx-with-a-gt-0-2-find-the-value-of-0-arctan-x-2-x-2-x-2-1-dx-

Question Number 77886 by mathmax by abdo last updated on 11/Jan/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \:+{x}^{−\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}…

e-sinh-x-cosh-x-dx-

Question Number 77887 by aliesam last updated on 11/Jan/20 $$\int\frac{{e}^{{sinh}\left({x}\right)} }{{cosh}\left({x}\right)}\:{dx} \\ $$ Answered by MJS last updated on 12/Jan/20 $$\int\frac{\mathrm{e}^{\mathrm{sinh}\:{x}} }{\mathrm{cosh}\:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sinh}\:{x}\:\rightarrow\:{dx}=\frac{\mathrm{1}}{\mathrm{cosh}\:{x}}\right] \\…