Menu Close

Category: Integration

nice-calculus-Evaluate-I-0-1-ln-1-x-x-dx-1-x-2-

Question Number 128977 by mnjuly1970 last updated on 11/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:{calculus}… \\ $$$$\:\:\:\:\mathscr{E}{valuate}\:::: \\ $$$$\:\:\:\:\:\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\frac{\mathrm{1}}{{x}}\:−\:{x}\right)\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=? \\ $$$$\:\:\:\:\:\:\:\ast………………………………\ast \\ $$ Answered by abderrahimelmerrouni last…

calculate-f-0-1-ln-x-4-4-dx-with-gt-0-then-find-the-value-of-0-1-ln-1-x-4-dx-

Question Number 128954 by mathmax by abdo last updated on 11/Jan/21 $$\mathrm{calculate}\:\:\mathrm{f}\left(\lambda\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}^{\mathrm{4}} \:+\lambda^{\mathrm{4}} \right)\mathrm{dx}\:\:\:\mathrm{with}\:\lambda>\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)\mathrm{dx} \\ $$ Answered by…

calculate-f-a-0-dx-x-2-a-2-x-2-x-1-2-with-a-gt-0-

Question Number 128950 by mathmax by abdo last updated on 11/Jan/21 $$\mathrm{calculate}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\mathrm{with}\:\mathrm{a}>\mathrm{0} \\ $$ Terms of Service Privacy Policy…

Question-63410

Question Number 63410 by aliesam last updated on 03/Jul/19 Commented by mathmax by abdo last updated on 03/Jul/19 $$\left.\mathrm{2}\right)\:{let}\:{I}\:=\int\:\:\:\frac{{xdx}}{\mathrm{1}+{sinx}}\:\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give}\: \\ $$$${I}\:=\:\int\:\:\:\frac{\mathrm{2}{arctan}\left({t}\right)}{\left(\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}\:=\:\mathrm{2}\int\:\:\:\:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}}\:{dt}\:=\mathrm{2}\:\int\:\:\:\frac{{arctan}\left({t}\right)}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:\:…