Menu Close

Category: Integration

Question-65581

Question Number 65581 by aliesam last updated on 31/Jul/19 Commented by mathmax by abdo last updated on 31/Jul/19 $${let}\:{A}\:=\int\:{e}^{\left(\frac{\mathrm{1}}{{x}}−{x}\right)} \:{dx}\:\:\:{we}\:{have}\:{e}^{{u}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{u}^{{n}} }{{n}!}\:\:{with}\:{radius}\:{infinite}\Rightarrow \

Question-131073

Question Number 131073 by Algoritm last updated on 01/Feb/21 Answered by mr W last updated on 01/Feb/21 F(x)=e(lnx)1001x$${F}\:'\left({e}\right)={e}^{\left(\mathrm{ln}\:{e}\right)^{\mathrm{100}} } \frac{\mathrm{1}}{{e}}={e}×\frac{\mathrm{1}}{{e}}=\mathrm{1} \

Question-144064

Question Number 144064 by 0731619 last updated on 21/Jun/21 Answered by MJS_new last updated on 21/Jun/21 simplylett=tanxansweris$$−\frac{{x}}{{b}^{\mathrm{2}} }+\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{{ab}^{\mathrm{2}} }\mathrm{arctan}\:\frac{{a}\mathrm{tan}\:{x}}{\:\sqrt{{a}^{\mathrm{2}}…