Menu Close

Category: Integration

Question-142504

Question Number 142504 by rs4089 last updated on 01/Jun/21 Answered by mnjuly1970 last updated on 01/Jun/21 $$\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}{ln}\left(\mathrm{2}\right)−\frac{\mathrm{5}}{\mathrm{16}}\:\zeta\:\left(\mathrm{3}\right)\:….\checkmark \\ $$ Terms of Service Privacy Policy…

0-3-2x-3-2x-1-dx-ln7-please-

Question Number 11429 by @ANTARES_VY last updated on 25/Mar/17 $$\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{3}}{\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1}}\boldsymbol{\mathrm{dx}}=\boldsymbol{\alpha}+\boldsymbol{\mathrm{ln}}\mathrm{7}. \\ $$$$\boldsymbol{\alpha}=? \\ $$$$\boldsymbol{\mathrm{please}}…… \\ $$ Answered by FilupS last updated on 26/Mar/17…

0-a-dx-a-sinx-a-cosx-a-R-test-for-a-1-

Question Number 76956 by behi83417@gmail.com last updated on 01/Jan/20 $$\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}} {\int}}\:\:\:\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt{\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{sinx}}\right)\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{cosx}}\right)}}\:=? \\ $$$$\left[\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}^{+} ,\boldsymbol{\mathrm{test}}\:\boldsymbol{\mathrm{for}}:\:\:\boldsymbol{\mathrm{a}}=\mathrm{1}\right] \\ $$ Answered by john santu last updated on 02/Jan/20…

x-p-1-x-q-dx-p-q-2n-N-p-lt-q-

Question Number 76955 by behi83417@gmail.com last updated on 01/Jan/20 $$\int\:\:\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{p}}} }{\:\sqrt{\mathrm{1}\pm\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{q}}} }}\:\boldsymbol{\mathrm{dx}}=?\:\:\:\:\left[\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}=\mathrm{2}\boldsymbol{\mathrm{n}}\in\boldsymbol{\mathrm{N}},\boldsymbol{\mathrm{p}}<\boldsymbol{\mathrm{q}}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Evaluate-1-3-x-1-x-1-2-dx-

Question Number 11406 by tawa last updated on 24/Mar/17 $$\mathrm{Evaluate}:\:\:\:\:\:\:\:\int_{\:\mathrm{1}} ^{\:\mathrm{3}} \:\:\frac{\mathrm{x}\:−\:\mathrm{1}}{\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$ Answered by sm3l2996 last updated on 24/Mar/17 $$\frac{\mathrm{x}−\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{a}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{b}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }…