Question Number 76355 by mathmax by abdo last updated on 26/Dec/19 $${find}\:\int\:\frac{{arctan}\left(\sqrt{\mathrm{1}+{x}}\right)}{\mathrm{2}+{x}}{dx} \\ $$ Answered by john santu last updated on 27/Dec/19 $${let}\:\sqrt{\mathrm{1}+{x}}={tant}\:,\:\mathrm{1}+{x}={tan}^{\mathrm{2}} {t}\:, \\…
Question Number 76353 by mathmax by abdo last updated on 26/Dec/19 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({sin}\left(\pi{x}^{\mathrm{2}} \right)\right)}{{x}^{\mathrm{2}} \:+\pi^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last…
Question Number 76352 by mathmax by abdo last updated on 26/Dec/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({arctan}\left({x}^{\mathrm{2}} +\mathrm{2}\right)\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Commented by mathmax by abdo last updated…
Question Number 76350 by mathmax by abdo last updated on 26/Dec/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({e}^{{x}^{\mathrm{2}} } \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$ Commented by mathmax by abdo last…
Question Number 76351 by mathmax by abdo last updated on 26/Dec/19 $${calculate}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\Gamma\left({x}\right){dx}\:\:{and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141868 by mnjuly1970 last updated on 24/May/21 $$\:\:\:\:\:\:\:\:\:\:\:\:……\mathscr{A}{dvanced}\:\:…..\mathscr{C}{alculus}…….. \\ $$$$\:\:\:\:\:\:\:\:\:…..\:\:\int_{\:\mathbb{R}} ^{\:} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}=? \\ $$$$\:\:\:\:\: \\ $$ Commented by mindispower…
Question Number 10790 by Nur450737 last updated on 25/Feb/17 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{sin}\:{x}}\:{dx} \\ $$ Answered by bahmanfeshki last updated on 26/Feb/17 $$\sqrt{\mathrm{sin}\:{x}}={t} \\ $$$${t}^{\mathrm{2}} =\mathrm{sin}\:{x}\Rightarrow\mathrm{cos}\:{x}=\sqrt{\mathrm{1}−{t}^{\mathrm{2}}…
Question Number 141859 by iloveisrael last updated on 24/May/21 $$\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{4}{e}^{−{x}^{\mathrm{2}} } }{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\: \\ $$ Commented by Dwaipayan Shikari last updated on…
Question Number 76323 by aliesam last updated on 26/Dec/19 Commented by mind is power last updated on 27/Dec/19 $$\mathrm{I}_{\mathrm{n}} =\int\mathrm{cos}^{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{e}^{\mathrm{ax}} \mathrm{dx} \\ $$$$\mathrm{by}\:\mathrm{part} \\…
Question Number 76317 by Master last updated on 26/Dec/19 Commented by john santu last updated on 26/Dec/19 $$\int{e}^{{xlnx}} \:{dx}.\:{with}\:{integration}\:{by}\:{part} \\ $$$${u}={e}^{{xlnx}} \rightarrow{du}=\left({lnx}+\mathrm{1}\right){e}^{{xlnx}} .\:{dv}={dx}\: \\ $$$${I}={xe}^{{xlnx}}…