Question Number 141713 by rs4089 last updated on 22/May/21 Answered by Dwaipayan Shikari last updated on 22/May/21 $$\mathrm{1}−{x}={u} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{{u}} {x}^{\mathrm{1}/\mathrm{3}} {y}^{−\mathrm{1}/\mathrm{2}}…
Question Number 141719 by qaz last updated on 22/May/21 $$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}=? \\ $$ Answered by MJS_new last updated on 23/May/21…
Question Number 141691 by mnjuly1970 last updated on 22/May/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{Calculus}\left({I}\right)…. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\frac{\mathrm{1}}{\mathrm{2}\:}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{4}}} }{dx}=??? \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 141685 by mnjuly1970 last updated on 22/May/21 $$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:……{nice}\:…\:…\:…\:{calculus}….. \\ $$$$\:\:\mathrm{I}{f}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{tan}\left({x}\right)}{{x}}\:=\:\mathrm{1}\:,\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:{lim}\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{tan}\left({x}\right)}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$ Answered by iloveisrael last updated on…
Question Number 76143 by Master last updated on 24/Dec/19 Commented by mathmax by abdo last updated on 24/Dec/19 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{4}+{x}^{\mathrm{2}} }{dx}\:\:{changement}\:{x}=\mathrm{2}{sh}\left({t}\right)\:{give} \\ $$$${I}\:=\int_{\mathrm{0}} ^{{argsh}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}…
Question Number 141649 by mnjuly1970 last updated on 21/May/21 $$\:\:\:\:\:\:\:\:\:…….{advanced}\:\:{calculus}…… \\ $$$$\:\:\:\:{prove}\:\:{that}−:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\phi:=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left(\mathrm{2}\pi{x}^{\mathrm{2}} \right)}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\checkmark \\ $$ Answered by ArielVyny last updated…
Question Number 10555 by paonky last updated on 17/Feb/17 $$\mathrm{why}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left[−\mathrm{ln}\left(\mathrm{u}\right)\right]^{{x}−\mathrm{1}} {du}\:\:? \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{this} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 76090 by john santuy last updated on 23/Dec/19 Commented by Prithwish sen last updated on 23/Dec/19 $$\mathrm{0} \\ $$ Answered by MJS last…
Question Number 141623 by qaz last updated on 21/May/21 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{\mathrm{1}+{x}}{dx}\right)^{\mathrm{2}} ={ln}\:\mathrm{2} \\ $$ Answered by mindispower last updated on 21/May/21…
Question Number 141599 by I want to learn more last updated on 20/May/21 $$\int_{\:\mathrm{1}} ^{\:\mathrm{3}} \:\int_{\:−\:\mathrm{1}} ^{\:\mathrm{1}} \int_{\:\mathrm{0}} ^{\:\mathrm{2}} \:\:\left(\mathrm{x}\:\:\:+\:\:\mathrm{2y}\:\:\:−\:\:\:\mathrm{z}\right)\:\mathrm{dx}\:\mathrm{dy}\:\mathrm{dz} \\ $$ Commented by I…