Menu Close

Category: Integration

1-1-2-3-2-1-2-3-4-2-1-3-4-5-2-1-16-4pi-2-39-

Question Number 141577 by qaz last updated on 20/May/21 $$\left(\frac{\mathrm{1}}{\mathrm{1}\centerdot\mathrm{2}\centerdot\mathrm{3}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{4}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{3}\centerdot\mathrm{4}\centerdot\mathrm{5}}\right)^{\mathrm{2}} +…=\frac{\mathrm{1}}{\mathrm{16}}\left(\mathrm{4}\pi^{\mathrm{2}} −\mathrm{39}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-10510

Question Number 10510 by ajfour last updated on 15/Feb/17 Answered by mrW1 last updated on 15/Feb/17 $$\mathrm{2sin}\:{x}+\mathrm{3cos}\:{x} \\ $$$$=\sqrt{\mathrm{13}}×\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\mathrm{sin}\:{x}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\mathrm{cos}\:{x}\right) \\ $$$$=\sqrt{\mathrm{13}}×\left(\mathrm{sin}\:{x}\mathrm{cos}\:{t}+\mathrm{cos}\:{x}\mathrm{sin}\:{t}\right) \\ $$$$=\sqrt{\mathrm{13}}×\mathrm{sin}\:\left({x}+{t}\right) \\ $$$${with}\:{t}=\mathrm{sin}^{−\mathrm{1}}…

One-definition-of-x-1-is-x-1-0-e-t-t-x-dx-According-to-WolframAlpha-another-definition-is-x-1-1-e-2ipix-1-L-e-t-t-x-dx-Can-someone-explian-to-me-where-this-comes-f

Question Number 10469 by FilupSmith last updated on 11/Feb/17 $$\mathrm{One}\:\mathrm{definition}\:\mathrm{of}\:\:\Gamma\left({x}+\mathrm{1}\right)\:\:\mathrm{is}: \\ $$$$\Gamma\left({x}+\mathrm{1}\right)=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{t}} {t}^{{x}} {dx} \\ $$$$\: \\ $$$$\mathrm{According}\:\mathrm{to}\:\mathrm{WolframAlpha},\:\mathrm{another} \\ $$$$\mathrm{definition}\:\mathrm{is}: \\ $$$$\Gamma\left({x}+\mathrm{1}\right)=\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}\pi{x}} −\mathrm{1}}\oint_{{L}}…