Menu Close

Category: Integration

let-f-x-0-t-a-1-x-t-n-dt-with-0-lt-a-lt-1-and-x-gt-0-and-n-2-1-determine-a-explicit-form-of-f-x-2-calculate-g-x-0-t-a-1-x-t-n-2-dt-3-find-f-k-x-at-for

Question Number 63664 by mathmax by abdo last updated on 07/Jul/19 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{{x}+{t}^{{n}} }\:{dt}\:\:\:{with}\:\mathrm{0}<{a}<\mathrm{1}\:\:{and}\:\:{x}>\mathrm{0}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\left({x}+{t}^{{n}} \right)^{\mathrm{2}} }\:{dt}…

let-A-n-0-x-a-1-1-x-n-dx-with-n-integr-and-n-2-and-0-lt-a-lt-1-1-calculate-A-n-2-find-the-values-of-0-x-a-1-1-x-2-dx-and-0-x-a-1-1-x-3-dx-3-calculate-

Question Number 63662 by mathmax by abdo last updated on 06/Jul/19 $$\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{{n}} }{dx}\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2}\:\:{and}\:\mathrm{0}<{a}<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{a}−\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:{and}\:\int_{\mathrm{0}}…

Question-63641

Question Number 63641 by aliesam last updated on 06/Jul/19 Commented by mathmax by abdo last updated on 06/Jul/19 $${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mid{sin}\left({n}\pi{x}\right)\mid}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx}\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ={lim}_{{n}\rightarrow+\infty}…

G-sin-2-x-sin-x-1-sin-x-cos-x-dx-

Question Number 129177 by bramlexs22 last updated on 13/Jan/21 $$\:\mathrm{G}\:=\:\int\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$ Answered by liberty last updated on 13/Jan/21 $$\:\mathrm{G}\:=\:\int\:\frac{\mathrm{sin}\:\mathrm{x}\left(\mathrm{sin}\:\mathrm{x}+\mathrm{1}\right)}{\mathrm{sin}\:\mathrm{x}+\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\:\mathrm{dx} \\ $$$$\:\mathrm{G}\:=\:\int\:\frac{\mathrm{2sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left\{\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right\}^{\mathrm{2}} }{\mathrm{2cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\left\{\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right\}}\mathrm{dx}…

J-d-tan-cot-sec-csc-

Question Number 129173 by bramlexs22 last updated on 13/Jan/21 $$\:\mathrm{J}\:=\:\int\:\frac{\mathrm{d}\theta}{\mathrm{tan}\:\theta+\mathrm{cot}\:\theta+\mathrm{sec}\:\theta+\mathrm{csc}\:\theta}\:? \\ $$ Answered by liberty last updated on 13/Jan/21 $$\:\mathrm{J}\:=\:\int\frac{\mathrm{d}\theta}{\frac{\mathrm{sin}\:\theta+\mathrm{1}}{\mathrm{cos}\:\theta}+\frac{\mathrm{cos}\:\theta+\mathrm{1}}{\mathrm{sin}\:\theta}}\:=\:\int\:\frac{\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta\:\mathrm{d}\theta}{\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{sin}\:\theta+\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{cos}\:\theta} \\ $$$$\:\mathrm{J}\:=\:\int\:\frac{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\mathrm{d}\theta}{\mathrm{1}+\mathrm{sin}\:\theta+\mathrm{cos}\:\theta}\:=\:\int\:\frac{\mathrm{2sin}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\theta}{\mathrm{2sin}\:\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}\mathrm{d}\theta…

Question-129158

Question Number 129158 by gowsalya last updated on 13/Jan/21 Answered by MJS_new last updated on 13/Jan/21 $$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\mid\mathrm{cos}\:\theta\:+\mathrm{i}\:\mathrm{sin}\:\theta\:−\mathrm{1}\mid{d}\theta= \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\pi} {\int}}\sqrt{\mathrm{1}−\mathrm{cos}\:\theta}\:{d}\theta= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:\rightarrow\:{d}\theta=\frac{\mathrm{2}{dt}}{{t}^{\mathrm{2}}…

Question-129159

Question Number 129159 by gowsalya last updated on 13/Jan/21 Answered by TheSupreme last updated on 13/Jan/21 $$\int\left({e}^{{i}\theta} +{e}^{−{i}\theta} \right){e}^{{i}\theta} /\mathrm{2}=\frac{{e}^{{i}\theta} }{\mathrm{4}{i}}+\frac{\theta}{\mathrm{2}}+{c} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} …=\pi…

Question-63615

Question Number 63615 by aliesam last updated on 06/Jul/19 Commented by mathmax by abdo last updated on 06/Jul/19 $${changement}\:\:{x}=−{t}\:\:{give}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:{xln}\left(\mathrm{1}+\mathrm{10}^{{x}} \right){dx}\:=−\int_{−\mathrm{1}} ^{\mathrm{1}} \:\left(−{t}\right){ln}\left(\mathrm{1}+\mathrm{10}^{−{t}} \right)\left(−{dt}\right)…