Question Number 75986 by Ajao yinka last updated on 21/Dec/19 Commented by abdomathmax last updated on 24/Dec/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({xt}\right){cos}\left({nx}\right)}{{x}}{dx}\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$${f}^{'} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 75984 by Ajao yinka last updated on 21/Dec/19 Answered by mind is power last updated on 23/Dec/19 $$\mathrm{y}=\mathrm{x}^{\mathrm{2}} \\ $$$$\Rightarrow\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{log}\left(\mathrm{y}\right)}{\mathrm{4}\left(\mathrm{1}+\mathrm{y}+\mathrm{y}^{\mathrm{2}} \right)}\mathrm{dy}…
Question Number 141507 by I want to learn more last updated on 19/May/21 $$\int\:\frac{\mathrm{dx}}{\mathrm{sin}^{\mathrm{4}} \mathrm{x}\:\:\:+\:\:\:\mathrm{cos}^{\mathrm{4}} \mathrm{x}}\:\:\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated…
Question Number 141501 by Rozix last updated on 19/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141499 by Rozix last updated on 19/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141496 by cesarL last updated on 19/May/21 $$\int\frac{\sqrt{\mathrm{2}+\mathrm{9}{x}^{\mathrm{2}} }}{{x}}{dx} \\ $$$${SOS}\:{SOS}\:{HELP} \\ $$ Answered by qaz last updated on 19/May/21 $$\int\sqrt{\mathrm{2}+\mathrm{9}{x}^{\mathrm{2}} }\frac{{dx}}{{x}} \\…
Question Number 75960 by Tony Lin last updated on 21/Dec/19 $${prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sinx}\right){dx}=−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2} \\ $$ Commented by Kunal12588 last updated on 21/Dec/19 $${now}\:{solve}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\:{x}\right){dx}…
Question Number 75951 by turbo msup by abdo last updated on 21/Dec/19 $${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{cosx}}{dx}\:\:{at}\:{form}\:{of} \\ $$$${serie}. \\ $$ Terms of Service Privacy Policy…
Question Number 75950 by turbo msup by abdo last updated on 21/Dec/19 $${give}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:\:{at}\:{form}\:{of}\:{serie}. \\ $$ Commented by mathmax by abdo last updated on…
Question Number 10399 by ramadevi last updated on 07/Feb/17 Terms of Service Privacy Policy Contact: info@tinkutara.com