Question Number 75248 by cesar.marval.larez@gmail.com last updated on 08/Dec/19 Commented by mathmax by abdo last updated on 14/Dec/19 $$\frac{{d}}{{dx}}\left(\frac{{e}^{{x}} }{\mathrm{1}+{x}}\right)\:=\frac{{e}^{{x}} \left(\mathrm{1}+{x}\right)−{e}^{{x}} ×\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }\:=\frac{\mathrm{xe}^{\mathrm{x}} }{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }\:\Rightarrow…
Question Number 140768 by EDWIN88 last updated on 12/May/21 $$\:\int_{−\infty} ^{\infty} \frac{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}{\mathrm{x}^{\mathrm{4}} +\mathrm{16}}\:\mathrm{dx}\:=? \\ $$ Answered by Ar Brandon last updated on 12/May/21 $$\mathcal{I}=\int_{−\infty}…
Question Number 9683 by tawakalitu last updated on 23/Dec/16 Commented by geovane10math last updated on 25/Dec/16 $$\mathrm{I}'\mathrm{m}\:\mathrm{working}\:\mathrm{in}\:\mathrm{this}\:\mathrm{problem}. \\ $$$$ \\ $$ Commented by geovane10math last…
Question Number 140715 by mnjuly1970 last updated on 11/May/21 $$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:……{advanced}\:\:{calculus}…… \\ $$$$\:\:\:\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\mathrm{2}} }{{cosh}^{\mathrm{2}} \left({x}^{\mathrm{2}} \right)}{dx}\overset{?} {=}\frac{\sqrt{\mathrm{2}}\:−\mathrm{2}}{\mathrm{4}}\:\sqrt{\pi}\:\zeta\:\left(\:\frac{\mathrm{1}}{\mathrm{2}}\:\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:………….. \\…
Question Number 9642 by tawakalitu last updated on 22/Dec/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 75177 by chess1 last updated on 08/Dec/19 Commented by chess1 last updated on 08/Dec/19 $$\mathrm{sir}\:\mathrm{mind}\:\mathrm{is}\:\mathrm{power}\:\:\mathrm{please}\:\mathrm{solution} \\ $$ Commented by mind is power last…
Question Number 140703 by rs4089 last updated on 11/May/21 Answered by Dwaipayan Shikari last updated on 11/May/21 $${x}={t}+\mathrm{1} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{\left({t}+\mathrm{1}\right)^{{p}+\mathrm{1}} {t}^{{q}} }\:\:\:{t}=\frac{\mathrm{1}}{{g}} \\…
Question Number 9623 by tawakalitu last updated on 21/Dec/16 $$\mathrm{Evaluate}\::\:\int_{\mathrm{4}} ^{\mathrm{5}.\mathrm{2}} \:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{dx}\:\: \\ $$$$\mathrm{using}\:\mathrm{trapezoidal}\:\mathrm{rule}.\:\mathrm{take}\:\mathrm{h}\:=\:\mathrm{0}.\mathrm{2} \\ $$ Commented by sandy_suhendra last updated on 21/Dec/16 Answered by…
Question Number 140684 by qaz last updated on 11/May/21 $$\int_{\mathrm{0}} ^{\pi} \mathrm{cos}\:^{{n}} \left({x}\right)\centerdot\mathrm{cos}\:\left({nx}\right){dx}=\frac{\pi}{\mathrm{2}^{{n}} } \\ $$ Answered by mnjuly1970 last updated on 11/May/21 $$\:\boldsymbol{\phi}:={Re}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{2}\pi}…
Question Number 140685 by Algoritm last updated on 11/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com