Question Number 74888 by abdomathmax last updated on 03/Dec/19 $${calculate}\:{f}\left(\alpha\right)=\int\sqrt{{x}^{\mathrm{2}} −{x}+\alpha}{dx}\:\:\left(\alpha\:{real}\right) \\ $$ Commented by MJS last updated on 03/Dec/19 $$\mathrm{no}\:\mathrm{borders}? \\ $$ Commented by…
Question Number 74891 by vishalbhardwaj last updated on 03/Dec/19 $$\mathrm{Q}.\:\mathrm{How}\:\mathrm{will}\:\mathrm{you}\:\mathrm{define}\:\mathrm{integrating}\: \\ $$$$\mathrm{constant}\:\mathrm{C}\:?\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{you} \\ $$$$\mathrm{define}\:\mathrm{C}\:? \\ $$$$ \\ $$ Commented by vishalbhardwaj last updated on 03/Dec/19…
Question Number 74886 by abdomathmax last updated on 03/Dec/19 $${calculate}\:\int\:\:\frac{{x}+\mathrm{1}}{\left({x}^{\mathrm{3}} +{x}−\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last updated on 15/Dec/19 $${let}\:{I}\:=\int\:\:\frac{{x}+\mathrm{1}}{\left({x}^{\mathrm{3}} +{x}−\mathrm{2}\right)^{\mathrm{2}}…
Question Number 74889 by abdomathmax last updated on 03/Dec/19 $${find}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{+\infty} \:\:{e}^{−{x}} \sqrt{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$ Commented by mathmax by abdo last updated on 06/Dec/19 $${let}\:{I}\:=\int_{−\frac{\mathrm{1}}{\mathrm{2}}}…
Question Number 140405 by mnjuly1970 last updated on 07/May/21 $$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{find}\:\:{the}\:\:{value}\:{of}\::: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\Theta\::=\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}{n}.\left(\mathrm{4}{n}+\mathrm{1}\right).\left(\mathrm{4}{n}+\mathrm{2}\right).\left(\mathrm{4}{n}+\mathrm{3}\right)}=? \\ $$$$\:\:\:\:\: \\ $$ Answered by qaz…
Question Number 140401 by mnjuly1970 last updated on 07/May/21 $$\:\:\: \\ $$$$\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} {ln}\left({x}\right){dx}\:=\:{m}.\left(\:\pi\:\gamma\right) \\ $$$$\:\:\:\:\:\:{find}\:\:\:''\:\:{m}\:\:''\:…… \\ $$$$ \\ $$ Answered…
Question Number 140399 by mnjuly1970 last updated on 07/May/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\xi}\::=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } −{e}^{−{x}} }{{x}}\:{dx}\:=\:{k}.\gamma\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{find}\:\:''\:{k}\:\:''\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\gamma\::=\:\mathscr{E}{uler}\:{constant}…. \\ $$ Answered by…
Question Number 74861 by aliesam last updated on 02/Dec/19 Answered by mind is power last updated on 02/Dec/19 $$\left(\mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}\right)\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =−\mathrm{ln}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} \right)\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\left(\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{x}\right)}\right)^{\frac{\mathrm{1}}{\mathrm{2}}}…
Question Number 140388 by benjo_mathlover last updated on 07/May/21 $$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\:\mathrm{x}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{5}} }\:\mathrm{dx}\: \\ $$ Answered by mathmax by abdo last updated on…
Question Number 140353 by Engr_Jidda last updated on 06/May/21 Commented by Engr_Jidda last updated on 06/May/21 $${complex}\:{analysis} \\ $$ Terms of Service Privacy Policy Contact:…