Question Number 140350 by RunDio last updated on 06/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74796 by mathmax by abdo last updated on 30/Nov/19 $${let}\:{U}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \left\{{arcsin}\left(\frac{\mathrm{1}}{{n}}\right)−\frac{\mathrm{1}}{{n}}\right\}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74799 by mathmax by abdo last updated on 30/Nov/19 $${prove}\:{that}\:\mathrm{0}\leqslant\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} \:{e}^{−{nt}} }{{e}^{{t}} −\mathrm{1}}{dt}\:\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:{for}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$ Answered by mind is power…
Question Number 74798 by mathmax by abdo last updated on 30/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\pi} {ln}\left(\mathrm{1}−\mathrm{2}{xcos}\theta\:+{x}^{\mathrm{2}} \right){d}\theta\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 140334 by mnjuly1970 last updated on 06/May/21 $$ \\ $$$$\:\:\:\:\:{calculate}\::: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\xi}\::=\:\int_{−\infty} ^{\:\infty} {ln}\left(\mathrm{2}−\mathrm{2}{cos}\left({x}^{\mathrm{2}} \right)\right){dx}=? \\ $$$$ \\ $$ Answered by ArielVyny last…
Question Number 74793 by mathmax by abdo last updated on 30/Nov/19 $${prove}\:{the}\:{convergence}\:{of}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+\sqrt{{x}}\right)}{\:\sqrt{{x}}}{dx} \\ $$ Commented by mathmax by abdo last updated on 06/Dec/19…
Question Number 140330 by Satyendra last updated on 06/May/21 $${Find}\:{the}\:{Integration}\:{Value}: \\ $$$$\mathrm{1} \:\int\frac{\sqrt{{x}}{d}\left({x}\right)}{\mathrm{1}+^{\mathrm{3}} \sqrt{{x}}}=? \\ $$$$\mathrm{2} \int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }=? \\ $$ Answered by john_santu last…
Question Number 140310 by liberty last updated on 06/May/21 $$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx}\:=\:\mathrm{0} \\ $$ Answered by qaz last updated on 06/May/21 $$\int_{\mathrm{0}} ^{\infty} \frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}}…
Question Number 140282 by qaz last updated on 06/May/21 $$\underset{{k}=\mathrm{0}} {\overset{{p}−\mathrm{1}} {\sum}}\begin{pmatrix}{{p}}\\{{k}}\end{pmatrix}\mathrm{sin}\:\left[\mathrm{2}\left({p}−{k}\right){x}\right]=? \\ $$$$\begin{pmatrix}{{p}}\\{\mathrm{0}}\end{pmatrix}\mathrm{sin}\:\left(\mathrm{2}{px}\right)+\begin{pmatrix}{{p}}\\{\mathrm{1}}\end{pmatrix}\mathrm{sin}\:\left[\left(\mathrm{2}{p}−\mathrm{2}\right){x}\right]+\begin{pmatrix}{{p}}\\{\mathrm{2}}\end{pmatrix}\mathrm{sin}\:\left[\left(\mathrm{2}{p}−\mathrm{4}\right){x}\right]+…+\begin{pmatrix}{\:\:\:{p}}\\{{p}−\mathrm{1}}\end{pmatrix}\mathrm{sin}\:\left(\mathrm{2}{x}\right)=\mathrm{2}^{{p}} \centerdot\mathrm{cos}\:^{{p}} \left({x}\right)\centerdot\mathrm{sin}\:\left({px}\right)\:\:\:\:\:??? \\ $$$${or}\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos}\:^{{p}} \left({x}\right)\centerdot\mathrm{sin}\:\left({px}\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\mathrm{2}^{−{p}} \right)\:\:\:\:\:{why}\:??? \\ $$ Terms…
Question Number 140278 by MarhAH last updated on 06/May/21 $$\int\sqrt{{x}\:\frac{}{}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com