Question Number 140056 by Ndala last updated on 03/May/21 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{folowing}\:\mathrm{result}: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cot}\:\theta\centerdot\left(\mathrm{log}\:\mathrm{sec}\:\theta\right)^{\mathrm{3}} {d}\theta=\frac{\pi^{\mathrm{4}} }{\mathrm{240}} \\ $$$$. \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{your}\:\mathrm{help},\:\mathrm{if}\:\mathrm{possible}\:\mathrm{please}. \\ $$ Answered by Ar…
Question Number 74514 by mathmax by abdo last updated on 25/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{\left({x}−{sin}\theta\right){d}\theta}{\left({x}^{\mathrm{2}} −\mathrm{2}{x}\:{sin}\theta\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by mathmax by abdo last updated…
Question Number 140046 by mnjuly1970 last updated on 03/May/21 $$\:\:\:\:\:\:\:\:\:\:………..\:{nice}\:…….{calculus}\left({I}\right)\:…….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Theta\::={lim}_{\:{x}\rightarrow\:\frac{\pi}{\mathrm{4}}} \:\left(\:{tan}\left({x}\right)\:\right)^{\:{tan}\left(\mathrm{2}{x}\right)} \:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…………………………. \\ $$$$ \\ $$ Commented by mnjuly1970 last updated…
Question Number 74500 by mathmax by abdo last updated on 25/Nov/19 $$\left.\mathrm{1}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{3}} −\mathrm{2}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} \left({x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right){find}\:\:\:\int_{\mathrm{3}} ^{+\infty} \:{F}\left({x}\right){dx} \\ $$ Terms of Service Privacy…
Question Number 140028 by mnjuly1970 last updated on 03/May/21 $$\:\:\:{Evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{P}\::=\underset{{k}=\mathrm{3}} {\overset{\infty} {\prod}}\frac{\left({k}^{\mathrm{3}} +\mathrm{3}{k}\right)^{\mathrm{2}} }{{k}^{\mathrm{6}} −\mathrm{64}}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…………………….. \\ $$ Terms of Service Privacy…
Question Number 74492 by mathmax by abdo last updated on 24/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 74484 by mathmax by abdo last updated on 24/Nov/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 74446 by rajesh4661kumar@gmail.com last updated on 24/Nov/19 Answered by Kunal12588 last updated on 24/Nov/19 $${I}=\int{e}^{{tan}^{−\mathrm{1}} {x}} \left(\frac{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$$${let}\:{t}={tan}^{−\mathrm{1}} {x} \\…
Question Number 8914 by tawakalitu last updated on 04/Nov/16 $$\int\:\mid\mathrm{x}\mid\:\mathrm{dx} \\ $$ Commented by 123456 last updated on 05/Nov/16 $${I}=\int\mid{x}\mid{dx} \\ $$$${x}>\mathrm{0} \\ $$$${I}=\int{xdx}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{C}…
Question Number 139932 by Ar Brandon last updated on 02/May/21 $$\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{h}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{h}} \mathrm{d}\xi\int_{\mathrm{0}} ^{\mathrm{h}} \mathrm{f}\left(\mathrm{x}+\xi+\eta\right)\mathrm{d}\eta \\ $$$$\mathrm{Calculate}\:\mathrm{F}''\left(\mathrm{x}\right) \\ $$ Terms of Service Privacy Policy…