Menu Close

Category: Integration

nice-calculus-calculate-F-0-te-t-sin-3-t-dt-

Question Number 139734 by mnjuly1970 last updated on 30/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\:{nice}\:…{calculus}….. \\ $$$$\:\:\:\:\:\:\:{calculate}\:::\:\: \\ $$$$\:\:\:\:\:\:\mathscr{F}\::=\:\int_{\mathrm{0}} ^{\:\infty} {te}^{−{t}} {sin}^{\mathrm{3}} \left({t}\right){dt}=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………………….. \\ $$ Answered…

Prove-1-2-n-1-a-n-cos-nx-1-a-2-1-2acos-x-a-2-a-lt-1-And-calculate-0-pi-x-2-1-8sin-2-x-dx-5pi-3-36-pi-6-ln-2-2-

Question Number 139708 by qaz last updated on 30/Apr/21 $${Prove}:\:\:\:\mathrm{1}+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}^{{n}} \mathrm{cos}\:\left({nx}\right)=\frac{\mathrm{1}−{a}^{\mathrm{2}} }{\mathrm{1}−\mathrm{2}{a}\mathrm{cos}\:{x}+{a}^{\mathrm{2}} },\:\:\:\:\:\:\left(\mid{a}\mid<\mathrm{1}\right) \\ $$$${And}\:{calculate}::\:\:\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{8sin}\:^{\mathrm{2}} {x}}{dx}=\frac{\mathrm{5}\pi^{\mathrm{3}} }{\mathrm{36}}−\frac{\pi}{\mathrm{6}}{ln}^{\mathrm{2}} \mathrm{2} \\ $$…

Question-139696

Question Number 139696 by mnjuly1970 last updated on 30/Apr/21 Answered by Dwaipayan Shikari last updated on 30/Apr/21 $$\vartheta\left(\theta\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {sin}\left({n}\theta\right)}{{n}\:} \\ $$$$\vartheta\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}}…

Find-the-volume-of-the-solid-that-lies-within-the-sphere-x-2-y-2-z-2-16-above-the-x-y-plane-and-below-the-cone-z-x-2-y-2-

Question Number 74117 by necxxx last updated on 19/Nov/19 $${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{that}\:{lies} \\ $$$${within}\:{the}\:{sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16},\:{above} \\ $$$${the}\:{x}-{y}\:{plane}\:{and}\:{below}\:{the}\:{cone} \\ $$$${z}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$ Commented by…

show-that-0-1-x-2-1-x-4-dx-1-4-3-4-1-2-

Question Number 8514 by Basant007 last updated on 14/Oct/16 $$\mathrm{show}\:\mathrm{that}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{4}}\beta\left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$ Commented by swapnil last updated on 18/Oct/16 $$\mathrm{what}\:\mathrm{is}\:\beta\:\mathrm{here} \\…