Menu Close

Category: Integration

cos-x-7-1-3-sin-x-6-dx-

Question Number 139259 by bobhans last updated on 25/Apr/21 $$\:\int\:\frac{\mathrm{cos}\:\mathrm{x}+\sqrt[{\mathrm{3}}]{\mathrm{7}}}{\mathrm{sin}\:\mathrm{x}+\sqrt{\mathrm{6}}}\:\mathrm{dx}\:=? \\ $$ Answered by Dwaipayan Shikari last updated on 25/Apr/21 $$\int\frac{{cosx}+\sqrt[{\mathrm{3}}]{\mathrm{7}}}{{sinx}+\sqrt{\mathrm{6}}}{dx}={log}\left({sinx}+\sqrt{\mathrm{6}}\right)+\sqrt[{\mathrm{3}}]{\mathrm{7}}\:\int\frac{\mathrm{1}}{{sinx}+\sqrt{\mathrm{6}}}{dx} \\ $$$$={log}\left({sinx}+\sqrt{\mathrm{6}}\right)+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{7}}\:\int\frac{\mathrm{1}}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\sqrt{\mathrm{6}}}.\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:{tan}\frac{{x}}{\mathrm{2}}={t}…

Evaluate-the-integral-R-3x-2-14xy-8y-2-dxdy-for-the-region-R-in-the-1st-quadrant-bounded-by-the-lines-y-3-2-x-1-y-3-2-x-3-y-1-4-x-and-y-1-4-x-1-

Question Number 73715 by Learner-123 last updated on 15/Nov/19 $${Evaluate}\:{the}\:{integral}\:: \\ $$$$\underset{\:\mathbb{R}} {\int}\int\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{14}{xy}+\mathrm{8}{y}^{\mathrm{2}} \right){dxdy}\:{for}\:{the}\:{region} \\ $$$$\mathbb{R}\:\mathrm{in}\:{the}\:\mathrm{1}{st}\:{quadrant}\:{bounded}\:{by}\:{the} \\ $$$${lines}\:{y}=\frac{−\mathrm{3}}{\mathrm{2}}{x}+\mathrm{1},{y}=\frac{−\mathrm{3}}{\mathrm{2}}{x}+\mathrm{3},{y}=−\frac{\mathrm{1}}{\mathrm{4}}{x} \\ $$$${and}\:{y}=−\frac{\mathrm{1}}{\mathrm{4}}{x}+\mathrm{1}\:. \\ $$ Commented by…

0-1-ln-1-x-x-2-x-dx-0-1-ln-1-x-3-ln-1-x-x-dx-pi-2-6-0-1-x-3n-1-n-dx-n-1-1-3n-2-pi-2-18-pi-2-9-

Question Number 139224 by mnjuly1970 last updated on 24/Apr/21 $$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)}{{x}}{dx} \\ $$$$\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{3}} \right)−{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$\:\:\:\:=\Omega+\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\:\:\:\:\Omega=−\Sigma\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{3}{n}−\mathrm{1}}…

nice-math-prove-that-0-pi-2-ln-1-sin-x-cos-x-tan-x-dx-5pi-2-72-

Question Number 139217 by mnjuly1970 last updated on 24/Apr/21 $$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:…..\:{nice}\:….\:….\:{math}…. \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+{sin}\left({x}\right).{cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx}=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{72}} \\ $$ Commented by liki last…