Menu Close

Category: Integration

Solve-cos-1-x-1-x-2-1-log-e-2-sin-2x-1-x-2-pi-dx-Evaluate-pi-2-pi-2-sin-2-xcos-2-x-cosx-sinx-dx-

Question Number 73429 by Henri Boucatchou last updated on 12/Nov/19 $$\:\:\:{Solve}\::\:\int\frac{\left[{cos}^{−\mathrm{1}} {x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right]^{−\mathrm{1}} }{{log}_{{e}} \left[\mathrm{2}+\frac{{sin}\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\pi}\right]}{dx} \\ $$$$\:\:{Evaluate}\:\:\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} {sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\left({cosx}+{sinx}\right){dx} \\ $$ Commented…

Evaluate-1-2-2-4-x-2-4-x-2-3-x-dydx-after-changing-the-integral-to-polar-form-2-0-4-0-4-x-0-4-y-2-4-dzdydx-

Question Number 73428 by Learner-123 last updated on 12/Nov/19 $${Evaluate}\:: \\ $$$$\left.\mathrm{1}\right)\:\int_{−\mathrm{2}} ^{\:\mathrm{2}} \int_{−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} ^{\:\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }} \:\left(\mathrm{3}−{x}\right){dydx}\:. \\ $$$$\left({after}\:{changing}\:{the}\:{integral}\:{to}\:{polar}\:{form}\right). \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{4}}…

x-8-x-2-4x-16-dx-

Question Number 7872 by tawakalitu last updated on 22/Sep/16 $$\int\frac{{x}\:−\:\mathrm{8}}{{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:+\:\mathrm{16}}\:{dx} \\ $$ Commented by prakash jain last updated on 23/Sep/16 $$\frac{{x}−\mathrm{8}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{16}}=\frac{{x}−\mathrm{8}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}+\mathrm{12}} \\…

mathematics-prove-that-0-arctan-x-ln-1-x-2-1-x-2-dx-pi-2-ln-2-4-7-8-3-

Question Number 138940 by mnjuly1970 last updated on 20/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{mathematics}.. \\ $$$${prove}\:{that}: \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{arctan}\left({x}\right).{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:=\frac{\pi^{\mathrm{2}} {ln}\left(\mathrm{2}\right)}{\mathrm{4}}+\frac{\mathrm{7}}{\mathrm{8}}\:\zeta\left(\mathrm{3}\right) \\ $$ Terms of…

find-f-x-0-1-e-t-ln-1-xt-2-dt-with-x-lt-1-2-calculate-0-1-e-t-ln-1-t-2-2-dt-

Question Number 73397 by mathmax by abdo last updated on 11/Nov/19 $${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{t}} {ln}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right){dt} \\ $$ Commented…