Menu Close

Category: Integration

mathematical-analysis-suppose-f-a-b-R-is-a-function-and-a-b-R-is-an-increasing-function-on-a-b-meanwhile-is-continuous-at-y-0-whe

Question Number 138733 by mnjuly1970 last updated on 17/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{mathematical}\:….{analysis}….. \\ $$$$\:\:{suppose}\:\:\:\:{f}\::\left[{a}\:,\:{b}\right]\rightarrow\mathbb{R}\:{is}\:{a}\:{function} \\ $$$$\:\:\:{and}\:\:\:\alpha:\left[{a}\:,\:{b}\right]\overset{\alpha\nearrow} {\rightarrow}\mathbb{R}\:\left(\alpha\:{is}\:{an}\:{increasing}\:{function}\right. \\ $$$$\left.\:{on}\:\left[{a}\:,\:{b}\right]\right)\:\:{meanwhile}\:\alpha\:{is}\:{continuous}\:{at}\:{y}_{\mathrm{0}} \: \\ $$$$\:\:{where}\:\:\:{a}\leqslant{y}_{\mathrm{0}} \leqslant{b}\:\:.\:{defining}\: \\ $$$$\:\:\:{f}\left({x}\right)=\begin{cases}{\:\mathrm{1}\:\:\:\:\:\:\:\:\:{x}={y}_{\mathrm{0}} }\\{\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:{x}\neq{y}_{\mathrm{0}} }\end{cases}…

advanced-math-prove-that-k-0-1-16-k-4-8k-1-2-8k-4-1-8k-5-1-8k-6-pi-Bailey-Borwein-formula-

Question Number 138723 by mnjuly1970 last updated on 17/Apr/21 $$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:……..{advanced}…\:…\:…{math}…… \\ $$$$\:{prove}\:{that}\:_{\ast} ^{\ast} \:\::::: \\ $$$$\:\:\:\boldsymbol{\Omega}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{16}^{{k}} }\left(\frac{\mathrm{4}}{\mathrm{8}{k}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{8}{k}+\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{6}}\right)\right\}=\pi \\ $$$$\:\:\:\:\:\:\:\:\:….{Bailey}−{Borwein}\:{formula}…. \\ $$$$\:\:\:…