Menu Close

Category: Integration

let-f-x-pi-6-pi-4-tant-2-x-cost-dt-with-x-real-1-determine-a-explicit-form-for-f-x-2-determine-also-g-x-pi-6-pi-4-tant-2-xcost-2-dx-3-find-the-value-of-pi-6-pi-4-

Question Number 72888 by mathmax by abdo last updated on 04/Nov/19 $${let}\:{f}\left({x}\right)=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\mathrm{2}+{x}\:{cost}}{dt}\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:{g}\left({x}\right)=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\left(\mathrm{2}+{xcost}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{tant}}{\left(\mathrm{2}+\mathrm{3}{cost}\right)}{dt}\:{and}\:\int_{\frac{\pi}{\mathrm{6}}}…

1-3-e-x-sin-x-x-2-1-dx-pi-12e-

Question Number 138424 by tugu last updated on 13/Apr/21 $$\mid\underset{\mathrm{1}} {\overset{\sqrt{\mathrm{3}}} {\int}}\:\frac{{e}^{−{x}} {sin}\:{x}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\mid\leqslant\frac{\pi}{\mathrm{12}{e}} \\ $$ Commented by mitica last updated on 14/Apr/21 $$\exists{c}\in\left[\mathrm{1},\sqrt{\mathrm{3}}\right],\underset{\mathrm{1}} {\overset{\sqrt{\mathrm{3}}}…

A-B-R-f-1-0-0-1-f-x-2-dx-A-and-0-1-xf-x-dx-B-what-is-the-integral-value-of-0-1-xf-x-f-x-1-dx-by-using-trrms-of-A-and-B-

Question Number 138415 by tugu last updated on 13/Apr/21 $${A},{B}\:\in{R},\:\:{f}\left(\mathrm{1}\right)=\mathrm{0}\:,\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}\:={A}\:{and}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{xf}\left({x}\right){dx}={B}\: \\ $$$${what}\:{is}\:{the}\:{integral}\:{value}\:{of}\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{xf}\left({x}\right)\left({f}\:'\left({x}\right)−\mathrm{1}\right){dx}\:{by}\:{using}\:{trrms}\:{of}\:{A}\:{and}\:{B}\:?\: \\ $$ Answered by Ar Brandon…

if-the-F-x-1-x-1-x-2t-F-t-dt-what-the-F-1-value-using-the-Leibnitz-formula-

Question Number 138407 by tugu last updated on 13/Apr/21 $${if}\:{the}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{x}}\underset{\mathrm{1}} {\overset{{x}} {\int}}\left(\mathrm{2}{t}−{F}\:'\left({t}\right)\right){dt}\:\:\Rightarrow\:{what}\:{the}\:{F}\:'\left(\mathrm{1}\right)\:{value}\:{using}\:{the}\:{Leibnitz}\:{formula}. \\ $$ Answered by ajfour last updated on 13/Apr/21 $${F}\:'\left({x}\right)=−\frac{{F}\left({x}\right)}{{x}}+\frac{\mathrm{1}}{{x}}\left[\mathrm{2}{x}−{F}\:'\left({x}\right)\right] \\ $$$$\left({x}+\mathrm{1}\right){F}\:'\left({x}\right)+{F}\left({x}\right)=\mathrm{2}{x} \\…

Integrate-f-x-y-1-1-x-2-y-2-2-over-the-triangle-with-vertices-0-0-1-0-1-3-after-changing-it-to-polar-form-

Question Number 72796 by Learner-123 last updated on 03/Nov/19 $${Integrate}\:{f}\left({x},{y}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{over} \\ $$$${the}\:{triangle}\:{with}\:{vertices}\:\left(\mathrm{0},\mathrm{0}\right)\:,\left(\mathrm{1},\mathrm{0}\right), \\ $$$$\left(\mathrm{1},\sqrt{\mathrm{3}}\right)\:{after}\:{changing}\:{it}\:{to}\:{polar}\:{form}. \\ $$ Answered by mind is power last…