Menu Close

Category: Integration

Question-7026

Question Number 7026 by Tawakalitu. last updated on 07/Aug/16 Commented by Yozzii last updated on 07/Aug/16 $${Write}\:\int\frac{{sinx}+{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}=\int\frac{{sinx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}+\int\frac{{cosx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}. \\ $$$${Evaluate}\:{each}\:{integral}\:{by}\:{the}\:{following}\:{steps}…

0-pi-2-ln-ln-2-sin-pi-2-ln-2-sin-ln-cos-tan-d-

Question Number 138086 by EnterUsername last updated on 10/Apr/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\theta\right)}{\pi^{\mathrm{2}} +\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\theta\right)}\right)\:\frac{\mathrm{ln}\left(\mathrm{cos}\theta\right)}{\mathrm{tan}\theta}\mathrm{d}\theta \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

nice-calculus-prove-n-1-2n-1-1-n-1-log-2-

Question Number 138065 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:…{nice}\:…\:…\:…\:{calculus}… \\ $$$$\:\:\:\:\:\:\:{prove}:: \\ $$$$\:\:\:\:\:\:\:\:\:\Omega=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}\:=−\gamma+{log}\left(\mathrm{2}\right) \\ $$ Answered by Ñï= last updated…

advanced-calculus-prove-that-0-1-x-sin-2pix-dx-pi-2-

Question Number 138041 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:…….{advanced}\:…\:…\:…\:{calculus}…… \\ $$$$\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \psi\left({x}\right).{sin}\left(\mathrm{2}\pi{x}\right){dx}=−\frac{\pi}{\mathrm{2}}\:…\checkmark \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last…

0-pi-sin-3x-cos-x-dx-

Question Number 6979 by Fitrah A last updated on 04/Aug/16 $$\underset{\mathrm{0}} {\overset{\pi} {\int}}\left({sin}\:\mathrm{3}{x}\:+\:{cos}\:{x}\right)\:{dx}\:=\:? \\ $$ Answered by sandy_suhendra last updated on 04/Aug/16 $$=\left[−\frac{\mathrm{1}}{\mathrm{3}}{cos}\:\mathrm{3}{x}\:+\:{sin}\:{x}\right]_{\mathrm{0}} ^{\pi} \\…