Question Number 6971 by Tawakalitu. last updated on 03/Aug/16 $${Evaluate}\:\:\int\left({x}\:+\:\mathrm{3}{y}\right)\:{dx} \\ $$$${from}\:\left(\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{2},\mathrm{5}\right)\:{along}\:{the}\:{curve}\:\:{y}\:=\:\mathrm{1}\:+\:{x}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6970 by Tawakalitu. last updated on 03/Aug/16 $${Integrate}\:\:{dz}\:=\:\left(\mathrm{8}{e}^{\mathrm{4}{x}} \:+\:\mathrm{2}{xy}^{\mathrm{2}} \right)\:{dx}\:+\:\left(\mathrm{4}{cos}\:\mathrm{4}{y}\:\:−\:\mathrm{2}{xy}\right)\:{dy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72494 by aliesam last updated on 29/Oct/19 $$\frac{\int{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}\:{dx}−\mathrm{3}\int\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}{dx}}{\int\frac{{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{5}}}\:{dx}} \\ $$ Commented by mathmax by abdo last updated on 29/Oct/19…
Question Number 6959 by Tawakalitu. last updated on 03/Aug/16 $$\int\:{x}\:\left({x}\:+\:\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:{dx}\: \\ $$ Answered by FilupSmith last updated on 03/Aug/16 $${u}={x}+\mathrm{2} \\ $$$${x}={u}−\mathrm{2} \\ $$$${du}={dx}…
Question Number 138024 by Algoritm last updated on 09/Apr/21 Answered by TheSupreme last updated on 09/Apr/21 $${e}^{{x}} ={u} \\ $$$${dx}=\frac{\mathrm{1}}{{u}}{du} \\ $$$$\int\sqrt{{u}^{\mathrm{2}} +\mathrm{4}{u}−\mathrm{1}}\frac{{du}}{{u}} \\ $$$$\left({u}+\mathrm{2}\right)={z}…
Question Number 6947 by Tawakalitu. last updated on 03/Aug/16 $${Prove}\:{that}\: \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left\{\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{x}\:−\:{y}}{\left({x}\:+\:{y}\right)^{\mathrm{3}} }\:\:{dy}\right\}\:{dx}\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by Yozzii last…
Question Number 138026 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:………{nice}\:\:…\:…\:…\:{calculus}……….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Theta=\:\underset{\overset{{n}=\mathrm{1}} {\:}} {\overset{\infty} {\sum}}\left(\frac{{n}^{\mathrm{2}} }{{n}!.\mathrm{4}^{{n}} }\right)\:=?? \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 6945 by Tawakalitu. last updated on 03/Aug/16 $$\int\:\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{x}\:+\:\mathrm{1}}\:\:{dx} \\ $$ Commented by Yozzii last updated on 03/Aug/16 $${x}={u}^{\mathrm{3}} \Rightarrow{dx}=\mathrm{3}{u}^{\mathrm{2}} {du} \\ $$$${x}^{\mathrm{2}/\mathrm{3}}…
Question Number 6938 by Tawakalitu. last updated on 03/Aug/16 $${Integrate}:\:\:\:\:\:\:\:\:\frac{{x}\:{tan}^{−\mathrm{1}} \left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$ Commented by Yozzii last updated on 03/Aug/16 $${I}=\int\frac{{xtan}^{−\mathrm{1}} {x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}}…
Question Number 72466 by Learner-123 last updated on 29/Oct/19 $${Prove}\:{that}\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{−\sqrt{\mathrm{1}−\left({y}−\mathrm{1}\right)^{\mathrm{2}} }} ^{\:\:\mathrm{0}\:} \:{xy}^{\mathrm{2}} {dxdy}\:=\:−\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\boldsymbol{{after}}\:\mathrm{changing}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{to}\:\boldsymbol{\mathrm{polar}}\:\boldsymbol{\mathrm{form}}. \\ $$ Commented by Abdo msup. last…