Menu Close

Category: Integration

nice-calculus-n-1-n-2-n-4-n-

Question Number 138026 by mnjuly1970 last updated on 09/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:………{nice}\:\:…\:…\:…\:{calculus}……….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Theta=\:\underset{\overset{{n}=\mathrm{1}} {\:}} {\overset{\infty} {\sum}}\left(\frac{{n}^{\mathrm{2}} }{{n}!.\mathrm{4}^{{n}} }\right)\:=?? \\ $$ Answered by Dwaipayan Shikari last updated…

x-2-3-x-1-dx-

Question Number 6945 by Tawakalitu. last updated on 03/Aug/16 $$\int\:\frac{{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{x}\:+\:\mathrm{1}}\:\:{dx} \\ $$ Commented by Yozzii last updated on 03/Aug/16 $${x}={u}^{\mathrm{3}} \Rightarrow{dx}=\mathrm{3}{u}^{\mathrm{2}} {du} \\ $$$${x}^{\mathrm{2}/\mathrm{3}}…

Prove-that-0-2-1-y-1-2-0-xy-2-dxdy-4-5-after-changing-the-integral-to-polar-form-

Question Number 72466 by Learner-123 last updated on 29/Oct/19 $${Prove}\:{that}\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{−\sqrt{\mathrm{1}−\left({y}−\mathrm{1}\right)^{\mathrm{2}} }} ^{\:\:\mathrm{0}\:} \:{xy}^{\mathrm{2}} {dxdy}\:=\:−\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\boldsymbol{{after}}\:\mathrm{changing}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{to}\:\boldsymbol{\mathrm{polar}}\:\boldsymbol{\mathrm{form}}. \\ $$ Commented by Abdo msup. last…