Question Number 137911 by Bekzod Jumayev last updated on 08/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137896 by bemath last updated on 08/Apr/21 $$\underset{\mathrm{0}} {\int}^{\:\infty} \:\frac{{x}^{\mathrm{3}} +{x}+\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{x}}\:\left({x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}\right)}\:{dx}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72359 by aliesam last updated on 27/Oct/19 Commented by mind is power last updated on 27/Oct/19 $$\mathrm{nice}\:\mathrm{one}\:\mathrm{sir}\:\mathrm{thanx} \\ $$ Commented by aliesam last…
Question Number 137894 by EnterUsername last updated on 08/Apr/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{sinx}\right)\mathrm{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 08/Apr/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…
Question Number 137891 by bobhans last updated on 07/Apr/21 $$\underset{\mathrm{1}} {\overset{\mathrm{5}} {\int}}\:\frac{\mathrm{1}+\sqrt[{\mathrm{5}}]{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{5}\right)}\:\mathrm{cos}\:\pi{x}}{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{10}}\:{dx}\: \\ $$ Answered by bemath last updated on 07/Apr/21 Terms of Service…
Question Number 72346 by aliesam last updated on 27/Oct/19 Commented by mathmax by abdo last updated on 27/Oct/19 $${I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}^{\mathrm{10}} +{x}^{\mathrm{6}} \:+{x}^{\mathrm{4}} \:+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\:\:\:{by}\:{psrts}\:{u}^{'}…
Question Number 137876 by Bekzod Jumayev last updated on 07/Apr/21 Answered by MJS_new last updated on 07/Apr/21 $$\int\frac{{dx}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} }= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} }\:\rightarrow\:{dx}=−\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{4}/\mathrm{3}}…
Question Number 137873 by mnjuly1970 last updated on 07/Apr/21 $$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:…….{nice}\:\:…………{calculus}……. \\ $$$$\:\:\:\:\boldsymbol{\phi}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left({nx}\right)}{{n}}\:=\frac{\pi}{\mathrm{2}}−\frac{{x}}{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{\phi}=−{Im}\left(\mathrm{1}−{e}^{{ix}} \right)=−{Imln}\left\{\left(\mathrm{1}−{cos}\left({x}\right)−{isin}\left({x}\right)\right)\right\} \\ $$$$\:\:\:\:=−{Im}\left\{{ln}\left(\sqrt{\left(\mathrm{1}−{cos}\left({x}\right)\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \left({x}\right)}\:+{itan}^{−\mathrm{1}} \left(\frac{−{sin}\left({x}\right)}{\mathrm{1}−{cos}\left({x}\right)}\right)\right\}\right. \\…
Question Number 137874 by mnjuly1970 last updated on 07/Apr/21 $$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:…….{nice}\:…\:….\:{calculus}…. \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}\right)^{\mathrm{3}} =?…. \\ $$ Answered by EnterUsername last…
Question Number 72336 by Rio Michael last updated on 27/Oct/19 $${Obain}\:{an}\:{equation}\:{for}\: \\ $$$$\Rightarrow\:{the}\:{left}\:{Reimen}\:{Sum} \\ $$$$\Rightarrow\:{the}\:{right}\:{Reimen}\:{sum} \\ $$$$\Rightarrow\:{Trapeziodal}\:{rule} \\ $$$$\Rightarrow\:{Newton}\:{Raphson}'{s}\:{Iteration} \\ $$$$\:\:{Hence}\:{find}\:{and}\:{approximate}\:{value}\:{for}\:\int_{\mathrm{0}} ^{\mathrm{3}} \left({e}^{{x}} \:+\:{x}^{\mathrm{2}} \right){dx}…