Question Number 72337 by Rio Michael last updated on 27/Oct/19 $${Evaluate}\:\:\int_{−\mathrm{5}} ^{\mathrm{5}} \left(\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }\:\right)\:{dx}\:{using} \\ $$$$\Rightarrow\:{an}\:{algebraic}\:{method} \\ $$$$\Rightarrow\:{Geometrical}\:{mehod}\: \\ $$$${thanks}\:{in}\:{advanced}\:{great}\:{mathematicians} \\ $$ Commented by mathmax…
Question Number 6790 by Yozzii last updated on 26/Jul/16 $$\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{{y}} ^{\mathrm{1}} \:{x}^{−\mathrm{3}/\mathrm{2}} {cos}\frac{\pi{y}}{\mathrm{2}{x}}\:{dx}\:{dy}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137838 by Bekzod Jumayev last updated on 07/Apr/21 $$\int{log}_{{x}} {edx}=?? \\ $$ Commented by mr W last updated on 07/Apr/21 $$=\int\frac{\mathrm{1}}{\mathrm{ln}\:{x}}{dx} \\ $$$$={li}\left({x}\right)+{C}…
Question Number 137829 by mnjuly1970 last updated on 07/Apr/21 $$\:\:\:\:\:…….{nice}\:\:…\:…\:….\:{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}\::::: \\ $$$$\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{log}\left(\mathrm{1}−{x}\right)}{{x}}\right)^{\mathrm{2}} {dx}=\mathrm{2}\zeta\left(\mathrm{2}\right)…. \\ $$$$ \\ $$ Answered by EnterUsername last…
Question Number 72286 by Best last updated on 27/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6748 by Leila Akram last updated on 21/Jul/16 Answered by Yozzii last updated on 21/Jul/16 $${I}=\int_{−\mathrm{1}} ^{\mathrm{0}} {t}\sqrt{{t}+\mathrm{2}}{dx} \\ $$$${u}={t}+\mathrm{2}\Rightarrow{du}={dt} \\ $$$${t}={u}−\mathrm{2} \\…
Question Number 72287 by Best last updated on 27/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6746 by Tawakalitu. last updated on 20/Jul/16 $${Evaluate}\: \\ $$$$ \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\int_{\mathrm{2}} ^{\mathrm{4}} \:\:\:\left({x}\:+\:\mathrm{2}{y}\right)\:\:{dx}\:{dy}\: \\ $$ Answered by FilupSmith last updated…
Question Number 6737 by FilupSmith last updated on 19/Jul/16 $$\mathrm{If}\:{z}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{function}, \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{true}: \\ $$$$\int{zdx}=\int\Re\left({z}\right){dx}+{i}\int\Im\left({z}\right){dx} \\ $$ Commented by prakash jain last updated on 19/Jul/16 $$\mathrm{Yes}.\:\mathrm{Since}\:{i}\:\mathrm{is}\:\mathrm{simply}\:\mathrm{a}\:\mathrm{constant}.…
Question Number 137799 by mnjuly1970 last updated on 06/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…..\:{mathematical}\:..\:…\:…\:{analysis}…. \\ $$$$\:\:\:\:\:\:\:{evaluate}\:::\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\right)=? \\ $$$$ \\ $$ Answered…