Menu Close

Category: Integration

yz-dx-xz-dy-xy-dz-pleas-sir-help-me-

Question Number 72259 by mhmd last updated on 26/Oct/19 $$\int{yz}\:{dx}\:+\int{xz}\:{dy}\:+\int{xy}\:{dz}\:\:\:\:{pleas}\:{sir}\:{help}\:{me}\:? \\ $$ Answered by MJS last updated on 26/Oct/19 $$…={yz}\int{dx}+{xz}\int{dy}+{xy}\int{dz}=\mathrm{3}{xyz} \\ $$$$\mathrm{all}\:\mathrm{variables}\:\neq\:\mathrm{the}\:\mathrm{integral}\:\mathrm{variable}\:\mathrm{are} \\ $$$$\mathrm{considered}\:\mathrm{as}\:\mathrm{constant}\:\mathrm{factors} \\…

dx-sinx-sin2x-dx-

Question Number 6710 by Tawakalitu. last updated on 15/Jul/16 $$\int\:\frac{{dx}}{{sinx}\:+\:{sin}\mathrm{2}{x}}\:{dx} \\ $$ Answered by Yozzii last updated on 15/Jul/16 $${I}=\int\frac{{dx}}{{sinx}+{sin}\mathrm{2}{x}}=\int\frac{{sinx}}{{sin}^{\mathrm{2}} {x}\left(\mathrm{1}+\mathrm{2}{cosx}\right)}{dx} \\ $$$${I}=\int\frac{−{sinx}}{−\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)\left(\mathrm{1}+\mathrm{2}{cosx}\right)}{dx} \\…

Question-137770

Question Number 137770 by peter frank last updated on 06/Apr/21 Answered by Ñï= last updated on 06/Apr/21 $${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {da}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\left(\mathrm{1}+{ax}\right)\left(\mathrm{1}+{x}^{\mathrm{2}}…

Question-137717

Question Number 137717 by mnjuly1970 last updated on 05/Apr/21 Commented by Dwaipayan Shikari last updated on 05/Apr/21 $${f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}−{a}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)=\frac{\mathrm{1}−{a}}{\mathrm{4}}.\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}{a}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}−{a}\right){sec}\left(\frac{\pi}{\mathrm{2}}{a}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}{f}'\left(\mathrm{0}\right)=\frac{\pi}{\mathrm{12}} \\ $$ Terms…

let-f-x-x-2-2x-1-find-f-x-f-1-x-dx-and-f-1-x-f-x-dx-

Question Number 137697 by Mathspace last updated on 05/Apr/21 $${let}\:{f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1} \\ $$$${find}\:\:\int\:\frac{{f}\left({x}\right)}{{f}^{−\mathrm{1}} \left({x}\right)}{dx}\:{and}\:\int\:\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx} \\ $$ Commented by TheSupreme last updated on 07/Apr/21 $${f}^{−\mathrm{1}}…