Question Number 6582 by Temp last updated on 04/Jul/16 $$\int{e}^{−{ix}^{\mathrm{2}} } {dx}=?? \\ $$ Answered by Yozzii last updated on 04/Jul/16 $${e}^{{u}} =\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{u}^{{r}}…
Question Number 137605 by mnjuly1970 last updated on 04/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:\:\:{calculus}… \\ $$$$\:\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{F}_{{n}} }\right).{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{F}_{{n}+\mathrm{1}} }\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:{F}_{{n}} \:{is}\:{fibonacci}\:{sequence}…. \\…
Question Number 137610 by mnjuly1970 last updated on 04/Apr/21 $$\:\:\:\:\:\:\:\:\:\:……..\:{mathematical}\:\:\:{analysis}\:\left({II}\right)…. \\ $$$$\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}}{ln}\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \begin{pmatrix}{\mathrm{2}{n}}\\{\:\:{n}}\end{pmatrix}}=\frac{\pi^{\mathrm{2}} }{\mathrm{18}}.. \\ $$ Terms…
Question Number 72060 by Tushar rathore last updated on 23/Oct/19 $$\int\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}+\mathrm{sin}\:\mathrm{2}{x}}{dx}=? \\ $$ Commented by Tushar rathore last updated on 27/Oct/19 $${anyone}\:{tried}\:{this} \\ $$ Commented…
Question Number 72062 by ozodbek last updated on 23/Oct/19 Commented by ozodbek last updated on 24/Oct/19 $$\mathrm{solve}\:\mathrm{please}\: \\ $$ Commented by mathmax by abdo last…
Question Number 137592 by mnjuly1970 last updated on 04/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……{advanced}…..{calculus}…. \\ $$$$\:\:\:\:\boldsymbol{\Omega}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\psi''\left({n}\right)}{{n}}=??? \\ $$$$\:{I}\:{havefound}\:::\:\:\Omega=−\frac{\pi^{\mathrm{4}} }{\mathrm{36}}\:\:…\:! \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 72025 by mathmax by abdo last updated on 23/Oct/19 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\alpha{x}} {ln}\left({x}\right){dx}\:\:{with}\:\alpha>\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 72016 by mathmax by abdo last updated on 23/Oct/19 $${find}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{\left(\mathrm{3}+{nx}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{with}\:{n}\:{integr} \\ $$ Commented by mathmax by abdo last…
Question Number 72017 by mathmax by abdo last updated on 23/Oct/19 $${find}\:\int\:\:\frac{{x}+\sqrt{\mathrm{4}+{x}^{\mathrm{2}} }}{{x}−\sqrt{\mathrm{4}+\mathrm{3}{x}^{\mathrm{2}} }}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72012 by mathmax by abdo last updated on 23/Oct/19 $${find}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\alpha{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{real}. \\ $$ Commented by mathmax by abdo last updated…