Question Number 72015 by mathmax by abdo last updated on 23/Oct/19 $${find}\:\int\:\:\frac{{arctan}\left({x}−\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Commented by mathmax by abdo last updated on 07/Nov/19 $${let}\:{A}\:=\int\:\:\frac{{arctan}\left({x}−\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{2}}…
Question Number 72011 by mathmax by abdo last updated on 23/Oct/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by abdo last…
Question Number 6468 by Temp last updated on 28/Jun/16 $${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:{t}} {e}^{{i}\pi{x}} {x}^{−{x}} {dx},\:\:{t}\in\mathbb{Z} \\ $$ Commented by Temp last updated on 28/Jun/16 $${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:{t}}…
Question Number 137538 by Mathspace last updated on 03/Apr/21 $${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137536 by Mathspace last updated on 03/Apr/21 $${calculte}\:\int_{−\infty} ^{\infty} \:\frac{{sin}\left(\pi{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by mathmax by abdo last updated on…
Question Number 137535 by Mathspace last updated on 03/Apr/21 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{3}+{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137518 by Lordose last updated on 03/Apr/21 $$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{u}^{\mathrm{2}} +\mathrm{2}}{\mathrm{u}^{\mathrm{4}} +\mathrm{2u}^{\mathrm{2}} +\mathrm{2}}\mathrm{du} \\ $$ Answered by mathmax by abdo last updated on…
Question Number 6441 by Temp last updated on 27/Jun/16 $$\mathrm{After}\:\mathrm{looking}\:\mathrm{at}\:\mathrm{a}\:\mathrm{previous}\:\mathrm{question} \\ $$$$\mathrm{I}\:\mathrm{was}\:\mathrm{wondering}\:\mathrm{if}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{is}\:\mathrm{correct}: \\ $$$${I}\left({n}\right)=\int_{\mathrm{0}} ^{\:{n}} \left(−\mathrm{1}\right)^{{x}} {dx},\:\:{n}\in\mathbb{R} \\ $$$${I}\left({n}\right)=\int_{\mathrm{0}} ^{\:{n}} {e}^{{i}\pi{x}} {dx}\:\:\:\left(\mathrm{1}\right) \\…
Question Number 6444 by sanusihammed last updated on 27/Jun/16 $${I}\:=\:\int\frac{{dx}}{{sinx}\:+\:{sin}\mathrm{2}{x}} \\ $$ Commented by Temp last updated on 27/Jun/16 $$\mathrm{Try}\:\mathrm{www}.\mathrm{WolframAlpha}.\mathrm{com} \\ $$$$\mathrm{search}: \\ $$$$“{int}\:\mathrm{1}/\left({sin}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)\right)\:{dx}'' \\…
Question Number 6439 by sanusihammed last updated on 27/Jun/16 $${H}\:=\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} \sqrt{{tanx}}\:{dx}\: \\ $$ Commented by Temp last updated on 27/Jun/16 $$\int\sqrt{\mathrm{tan}{x}}{dx}\:\mathrm{is}\:\mathrm{difficult}\:\mathrm{to}\:\mathrm{solve}. \\ $$ Commented…