Menu Close

Category: Integration

nice-calculus-prove-that-0-1-ln-x-1-x-2-x-dx-pi-2-16-

Question Number 137439 by mnjuly1970 last updated on 02/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:……{nice}\:\:{calculus}….. \\ $$$$\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\chi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}\:\right)}{{x}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\:…. \\ $$ Answered by mindispower last updated…

mathematical-analysis-II-prove-that-R-n-0-x-2-n-n-2-dx-1-

Question Number 137420 by mnjuly1970 last updated on 02/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:……{mathematical}\:…\:…\:…\:{analysis}\left({II}\right)….. \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\:\mathbb{R}} \left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{x}^{\mathrm{2}} \right)^{{n}} }{\left({n}!\right)^{\mathrm{2}} }\right){dx}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…………………….. \\ $$ Commented…

mathematical-analysis-evaluate-0-e-2pix-e-pix-x-1-e-2pix-1-e-pix-dx-0-1-ln-x-dx-

Question Number 137419 by mnjuly1970 last updated on 02/Apr/21 $$\:\:\:\:\:\:\:………{mathematical}\:\:\:\:….\:\:\:{analysis}…….. \\ $$$$\:\:\:\:\:\:\:{evaluate}…. \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\mathrm{2}\pi{x}} −{e}^{\pi{x}} }{{x}\left(\mathrm{1}+{e}^{\mathrm{2}\pi{x}} \right)\left(\mathrm{1}+{e}^{\pi{x}} \right)}{dx}=\lambda\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right){dx}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\lambda\:=\:??? \\…

x-3-1-x-dx-

Question Number 6343 by sanusihammed last updated on 24/Jun/16 $$\int{x}^{\mathrm{3}} \:\sqrt{\mathrm{1}\:−\:{x}}\:\:{dx} \\ $$ Answered by nburiburu last updated on 24/Jun/16 $${by}\:{substitution}\:{t}=\sqrt{\mathrm{1}−{x}}\Rightarrow{x}=\mathrm{1}−{t}^{\mathrm{2}} \\ $$$${dx}=−\mathrm{2}{t}\:{dt} \\ $$$${I}=\int\left(\mathrm{1}−{t}^{\mathrm{2}}…

Advanced-Calculus-simplify-n-k-1-2n-1-log-1-tan-kpi-4-2n-1-moreover-find-the-value-of-lim-n-n-n-

Question Number 137397 by mnjuly1970 last updated on 02/Apr/21 $$\:…….\mathscr{A}{dvanced}\:…\:\:…\:\:…\:\mathscr{C}{alculus}……. \\ $$$$\:{simplify}\:::: \\ $$$$\:\Omega_{{n}} =\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right) \\ $$$$\:{moreover}\:,\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\Omega=\:{lim}_{{n}\rightarrow\infty} \frac{\Omega_{{n}} }{{n}}\:=??? \\ $$…

Question-137359

Question Number 137359 by rexford last updated on 01/Apr/21 Answered by Ar Brandon last updated on 01/Apr/21 $$\mathcal{I}=\int_{\sqrt[{\mathrm{3}}]{\mathrm{log3}}} ^{\sqrt[{\mathrm{3}}]{\mathrm{log4}}} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{sinx}^{\mathrm{3}} }{\mathrm{sinx}^{\mathrm{3}} +\mathrm{sin}\left(\mathrm{log12}−\mathrm{x}^{\mathrm{3}} \right)}\mathrm{dx} \\…