Menu Close

Category: Integration

Given-log-5-7-a-2-log-7-5-a-2-Find-the-value-a-e-1-ln-x-x-x-x-x-dx-

Question Number 136883 by bramlexs22 last updated on 27/Mar/21 $$\mathrm{Given}\:\mathrm{log}\:_{\mathrm{5}} \left(\mathrm{7}^{{a}} −\mathrm{2}\right)=\:\mathrm{log}\:_{\mathrm{7}} \left(\mathrm{5}^{{a}} +\mathrm{2}\right) \\ $$$$.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\int_{{a}} ^{\mathrm{e}} \:\frac{\mathrm{1}+\mathrm{ln}\:\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{x}} +\mathrm{x}^{−\mathrm{x}} }\:\mathrm{dx}\:. \\ $$ Answered by Olaf…

nice-calculus-prove-that-i-dx-1-x-e-x-2-pi-2-2-3-ii-0-sin-tan-x-x-dx-pi-2-1-1-e-

Question Number 136868 by mnjuly1970 last updated on 27/Mar/21 $$\:\:\:\:\:\:\:\:\:……\:{nice}\:\:\:\:\:{calculus}…. \\ $$$$\:\:{prove}\:\:{that}\::: \\ $$$$\:{i}:\:\:\int_{−\infty} ^{\:\infty} \frac{{dx}}{\left(\mathrm{1}+{x}+{e}^{{x}} \right)^{\mathrm{2}} +\pi^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:\:\:\:…

x-x-1-dx-

Question Number 136840 by physicstutes last updated on 26/Mar/21 $$\:\int\sqrt{\frac{{x}}{{x}−\mathrm{1}}}\:{dx} \\ $$ Answered by Olaf last updated on 26/Mar/21 $$\mathrm{F}\left({x}\right)\:=\:\int\sqrt{\frac{{x}}{{x}−\mathrm{1}}}\:{dx} \\ $$$$\mathrm{F}\left({u}\right)\:\overset{{x}={u}^{\mathrm{2}} } {=}\:\int\sqrt{\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{2}}…

x-2-1-dx-

Question Number 136841 by physicstutes last updated on 26/Mar/21 $$\int\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}\:{dx}\:=\:? \\ $$ Answered by Olaf last updated on 26/Mar/21 $$\mathrm{F}\left({x}\right)\:=\:\int\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$\mathrm{F}\left({u}\right)\:\:\overset{{x}=\mathrm{sh}{u}} {=}\:\:\int\sqrt{\mathrm{sh}^{\mathrm{2}}…

nice-calculus-for-f-x-f-x-pi-f-x-sin-2-x-x-2-dx-why-0-pi-f-x-dx-

Question Number 136835 by mnjuly1970 last updated on 26/Mar/21 $$\:\:\:\:\:\:\:\:…..{nice}\:\:\:\:\:{calculus}… \\ $$$$\:\:\:{for}\:\:\:\:{f}\left({x}\right)={f}\left({x}+\pi\right)\:: \\ $$$$\:\:\:\:\:\int_{−\infty} ^{\:\infty} {f}\left({x}\right).\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx}\overset{{why}???} {=}\int_{\mathrm{0}} ^{\:\pi} {f}\left({x}\right){dx} \\ $$ Terms of…