Question Number 70873 by Abdo msup. last updated on 09/Oct/19 $${calculate}\:\int\int_{\left[\mathrm{1},\mathrm{3}\right]^{\mathrm{2}} } \:\:\:{e}^{−{x}−{y}} \:{ln}\left(\mathrm{2}{x}+{y}\right){dxdy} \\ $$ Answered by mind is power last updated on 09/Oct/19…
Question Number 70870 by Abdo msup. last updated on 09/Oct/19 $${let}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+{x}^{\mathrm{2}} \right)^{\mathrm{4}} }\:\:{with}\:\:\mid{x}\mid>\mathrm{1} \\ $$$${and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{also}\:{g}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}{t}\:+{x}^{\mathrm{2}}…
Question Number 136405 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{2}\:\:\mathrm{determine}\:\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{and}\:\int\:\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{nf}\left(\mathrm{x}\right)\right)\mathrm{dx}\:\:\mathrm{with} \\ $$$$\mathrm{n}\:\mathrm{integr} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 70871 by Abdo msup. last updated on 09/Oct/19 $$\:{calculate}\:{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{with}\:{x}\geqslant\mathrm{0} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 136400 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{calculate}\:\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)} \:\:\:\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \right)\mathrm{dxdy} \\ $$ Terms of Service Privacy…
Question Number 136401 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\mathrm{dx} \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 136406 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{calculate}\:\:\mathrm{A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}{\left(\mathrm{x}^{\mathrm{2}} \:+\lambda^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}}…
Question Number 136402 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\mathrm{n}} \:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)\mathrm{arctan}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \mathrm{U}_{\mathrm{n}} \\ $$ Terms of Service Privacy…
Question Number 136403 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{find}\:\int\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{x}+\mathrm{3}}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136396 by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{a}} }{\mathrm{1}−\mathrm{x}}\mathrm{dx} \\ $$ Commented by Dwaipayan Shikari last updated on 21/Mar/21…