Menu Close

Category: Integration

sdvanced-cslculus-if-x-R-and-x-0-x-e-t-1-t-ln-x-t-dt-then-prove-that-0-e-x-x-dx-2-

Question Number 136381 by mnjuly1970 last updated on 21/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:……{sdvanced}\:\:\:{cslculus}…… \\ $$$$\:{if}\:\:{x}\in\mathbb{R}^{+} \:{and}::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \frac{{e}^{{t}} −\mathrm{1}}{{t}}{ln}\left(\frac{{x}}{{t}}\right){dt} \\ $$$$\:\:{then}\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} \boldsymbol{\phi}\left({x}\right){dx}=\zeta\left(\mathrm{2}\right)…

dx-sin-x-cos-x-

Question Number 136365 by liberty last updated on 21/Mar/21 $$\int\:\frac{{dx}}{\mathrm{sin}\:{x}\:\sqrt{\mathrm{cos}\:{x}}}\:=? \\ $$ Answered by mathmax by abdo last updated on 21/Mar/21 $$\mathrm{I}\:=\int\:\frac{\mathrm{dx}}{\mathrm{sinx}\sqrt{\mathrm{cosx}}}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{cosx}=\mathrm{t}^{\mathrm{2}} \:\Rightarrow\mathrm{x}=\mathrm{arcos}\left(\mathrm{t}^{\mathrm{2}} \right) \\…

3x-i-2x-y-dx-

Question Number 5278 by sara last updated on 04/May/16 $$\int\left\{\left(\mathrm{3}{x}\right){i}+\left(\mathrm{2}{x}\right){y}\right\}{dx}= \\ $$$$ \\ $$ Answered by FilupSmith last updated on 04/May/16 $$\int\left(\mathrm{3}{xi}+\mathrm{2}{xy}\right){dx} \\ $$$$=\mathrm{3}{i}\int{xdx}+\mathrm{2}{y}\int{xdx} \\…

Question-70808

Question Number 70808 by rajesh4661kumar@gmail.com last updated on 08/Oct/19 Answered by MJS last updated on 08/Oct/19 $$\int\left(\mathrm{sec}\:{x}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{csc}\:{x}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} {dx}=\int\frac{{dx}}{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\:\left(\mathrm{tan}\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\left(\mathrm{cos}\:{x}\right)^{\mathrm{2}} {dt}\right] \\ $$$$=\int\frac{{dt}}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}}…

3x-x-2-2x-5-dx-

Question Number 5266 by Kasih last updated on 03/May/16 $$\int\:\frac{\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} +\:\mathrm{2}{x}+\:\mathrm{5}}}\:{dx} \\ $$ Commented by prakash jain last updated on 03/May/16 $$\mathrm{You}\:\mathrm{can}\:\mathrm{integrate}\:\mathrm{as}\:\mathrm{following} \\ $$$$\frac{\mathrm{3}{x}+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}}−\frac{\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}}…